ফাংশনের সর্বোচ্চ ও সর্বনিম্ন মান নির্ণয় একটি গুরুত্বপূর্ণ প্রক্রিয়া, যা কোন ফাংশনের বৃহত্তম বা ক্ষুদ্রতম মান নির্ধারণ করে। এটি সাধারণত সর্বাধিক (Maximum) এবং সর্বনিম্ন (Minimum) মান হিসেবে পরিচিত এবং এই প্রক্রিয়াটি গণিত, পদার্থবিজ্ঞান এবং প্রকৌশলের বিভিন্ন ক্ষেত্রে ব্যবহার হয়।
ফাংশনের সর্বোচ্চ ও সর্বনিম্ন মান নির্ণয়ের জন্য নিচের ধাপগুলো অনুসরণ করা হয়:
ফাংশন \( f(x) \) এর প্রথম ডেরিভেটিভ \( f'(x) \) বের করতে হয় এবং এটি \( 0 \) বা অপরিবর্তনীয় পয়েন্টে স্থাপন করতে হয়। এভাবে প্রাপ্ত \( x \)-এর মানগুলোকে সুষম বিন্দু (Critical Points) বলা হয়।
\[
f'(x) = 0
\]
এখানে \( f'(x) = 0 \) করে যে সমস্ত \( x \)-এর মান পাওয়া যায়, সেগুলিই ফাংশনের সম্ভাব্য সর্বোচ্চ বা সর্বনিম্ন বিন্দু।
ফাংশনের দ্বিতীয় ডেরিভেটিভ \( f''(x) \) ব্যবহার করে এই সুষম বিন্দুগুলোর প্রকার নির্ধারণ করা হয়।
কোন ফাংশন যদি নির্দিষ্ট সীমার মধ্যে থাকে (যেমন \( a \) থেকে \( b \) পর্যন্ত), তাহলে ঐ সীমার প্রান্তিক বিন্দুগুলোতে (boundary points) সর্বোচ্চ ও সর্বনিম্ন মান যাচাই করা প্রয়োজন।
\[
f(a) \text{ এবং } f(b)
\]
প্রাপ্ত মানগুলোর মধ্যে বৃহত্তমটি হবে সর্বাধিক মান এবং ক্ষুদ্রতমটি হবে সর্বনিম্ন মান।
ধরা যাক, \( f(x) = x^2 - 4x + 3 \) ফাংশনের সর্বোচ্চ এবং সর্বনিম্ন মান নির্ণয় করতে হবে।
১. প্রথম ডেরিভেটিভ নির্ণয়:
\[
f'(x) = 2x - 4
\]
এখন, \( f'(x) = 0 \) বসিয়ে \( x \)-এর মান নির্ণয় করা যাক:
\[
2x - 4 = 0 \Rightarrow x = 2
\]
সুতরাং, \( x = 2 \) হলো একটি সুষম বিন্দু।
২. দ্বিতীয় ডেরিভেটিভ পরীক্ষা:
\[
f''(x) = 2
\]
যেহেতু \( f''(x) > 0 \), তাই \( x = 2 \) বিন্দুটিতে ফাংশনটি সর্বনিম্ন মান ধারণ করে।
৩. সীমার মান নির্ণয়:
\( f(x) = x^2 - 4x + 3 \) এর \( x = 2 \) বিন্দুতে মান:
\[
f(2) = 2^2 - 4 \times 2 + 3 = 4 - 8 + 3 = -1
\]
সুতরাং, \( f(x) \)-এর সর্বনিম্ন মান হলো \(-1\)। তবে ফাংশনটি অসীম পর্যন্ত বিস্তৃত হলে সর্বোচ্চ মান নির্ণয় করা যাবে না।
ফাংশনের সর্বোচ্চ ও সর্বনিম্ন মান নির্ণয় করতে ডেরিভেটিভ এবং সীমার মান যাচাই গুরুত্বপূর্ণ পদ্ধতি, যা প্রকৃত জীবনের বিভিন্ন সমস্যার সমাধানে ব্যবহৃত হয়।