কার্তেসীয় এবং পোলার স্থানাঙ্ক ব্যবস্থার মধ্যে সম্পর্ক হলো বিভিন্ন স্থানাঙ্ক সিস্টেমের মধ্যে অবস্থান নির্দেশ করার একটি উপায়। এই দুই স্থানাঙ্ক ব্যবস্থার মধ্যে সম্পর্ক বোঝার জন্য নিচে বিস্তারিত আলোচনা করা হলো:
কার্তেসীয় স্থানাঙ্কে (Cartesian Coordinates) একটি বিন্দুর অবস্থানকে \( (x, y) \) আকারে প্রকাশ করা হয়, যেখানে:
পোলার স্থানাঙ্কে (Polar Coordinates) একটি বিন্দুর অবস্থানকে \( (r, \theta) \) আকারে প্রকাশ করা হয়, যেখানে:
কার্তেসীয় স্থানাঙ্ক \( (x, y) \) থেকে পোলার স্থানাঙ্ক \( (r, \theta) \) এ রূপান্তর করার জন্য নিচের সূত্রগুলো ব্যবহার করা হয়:
\[
r = \sqrt{x^2 + y^2}
\]
\[
\theta = \tan^{-1} \left( \frac{y}{x} \right)
\]
এখানে \( r \) হল ব্যাসার্ধ এবং \( \theta \) হল কোণ।
পোলার স্থানাঙ্ক \( (r, \theta) \) থেকে কার্তেসীয় স্থানাঙ্ক \( (x, y) \) এ রূপান্তর করার জন্য নিচের সূত্রগুলো ব্যবহার করা হয়:
\[
x = r \cos \theta
\]
\[
y = r \sin \theta
\]
এখানে \( r \) হল মূলবিন্দু থেকে বিন্দুর দূরত্ব এবং \( \theta \) হল কোণ।
যদি একটি বিন্দুর কার্তেসীয় স্থানাঙ্ক \( (3, 4) \) হয়, তাহলে আমরা পোলার স্থানাঙ্কে এটি বের করতে পারি:
অতএব, পোলার স্থানাঙ্ক \( (5, 53.13^\circ) \) বা \( (5, 0.93) \)।
এইভাবে কার্তেসীয় এবং পোলার স্থানাঙ্ক ব্যবস্থার মধ্যে রূপান্তর করতে এই সূত্রগুলো ব্যবহার করা হয়।