একই ঘটনার পুনরাবৃতি ঘটলে সম্ভাবনা (Probability of Repeated Occurrence of the Same Event) বিষয়টি সাধারণত সামগ্রিক সম্ভাবনা (Cumulative Probability) বা অনুপ্রবাহ সম্ভাবনা (Compound Probability) হিসেবে বিবেচনা করা হয়। যদি কোনো ঘটনা বারবার ঘটতে থাকে, তবে তার সম্ভাবনা নির্ণয় করতে আমরা কিছু গাণিতিক নিয়ম ব্যবহার করি।
এখানে আলোচনা করা হলো এমন কিছু মূল ধারণা:
ধরা যাক, একটি নির্দিষ্ট ঘটনা A এর সম্ভাবনা P(A) আছে এবং আমরা চাই, A ঘটনা দুটি বা তার বেশি বার পুনরাবৃত্তি ঘটুক।
যদি A ঘটনা দুটি বা তার বেশি বার ঘটে এবং প্রতিটি ঘটনার সম্ভাবনা একে অপরের থেকে নিরপেক্ষ (independent) হয়, তাহলে গুণ নিয়ম (Multiplication Rule) ব্যবহার করা হয়। উদাহরণস্বরূপ:
P(A ঘটবে 2 বার)=P(A)×P(A)=p×p=p2
P(A ঘটবে 3 বার)=P(A)×P(A)×P(A)=p3
এভাবে, যদি A ঘটনা n বার পুনরাবৃত্তি ঘটে, তাহলে সম্ভাবনা হবে:
P(A ঘটবে n বার)=pn
ধরা যাক, একটি ফ্লিপ করা কয়েনের উল্টো পিঠ (Head) আসার সম্ভাবনা 0.5। যদি আমরা কয়েনটি ৩ বার ফ্লিপ করি, তাহলে একই ঘটনা (Head) ৩ বার আসার সম্ভাবনা হবে:
P(Head 3 বার)=0.5×0.5×0.5=0.125
যখন একাধিক ঘটনার সম্ভাবনা একসাথে বা ধারাবাহিকভাবে ঘটে, তখন সেগুলোর সম্ভাবনা গুণনীয় (compound) বা যোগফলে নির্ণয় করা হয়।
ধরা যাক, একটি ডাইসের প্রত্যেকটি পিঠের (১ থেকে ৬ পর্যন্ত) সম্ভাবনা সমান। যদি A ঘটনার অর্থ হয় "ডাইসের উপর ৪ আসা", তাহলে P(A)=16। এখন, যদি আমরা ২ বার ডাইস ফেলে একই পিঠ (৪) আসার সম্ভাবনা জানতে চাই, তাহলে তা হবে:
P(৪ আসবে 2 বার)=P(A)×P(A)=16×16=136
অনেক ক্ষেত্রে, যখন ঘটনাগুলোর মধ্যে কিছু নির্দিষ্ট সম্পর্ক থাকে (যেমন, একাধিক কার্যকলাপ বা সিরিজের অংশ), তখন যোগ নিয়ম (Addition Rule) বা গুণ নিয়ম (Multiplication Rule) ব্যবহার করা হয় তাদের যৌথ বা একত্রিত সম্ভাবনা বের করার জন্য।
ধরা যাক, আপনি একটি ডাইস ৫ বার ফেলে প্রতিবার ৪ আসার সম্ভাবনা জানতে চান। এর জন্য গুণ নিয়ম প্রয়োগ হবে:
P(৪ আসবে 5 বার)=(16)5=17776
একই ঘটনার পুনরাবৃত্তি ঘটানোর সম্ভাবনা নির্ণয় করার জন্য, গাণিতিকভাবে গুণ নিয়ম এবং যোগ নিয়ম ব্যবহার করা হয়। প্রতিটি ঘটনার সম্ভাবনা নির্ধারণ করে, তার পরিমাণ বার পুনরাবৃত্তি ঘটানোর সম্ভাবনা বের করা সম্ভব।
Read more