তড়িৎ প্রবাহের চৌম্বক ক্রিয়া ও চুম্বকত্ব (অধ্যায় ৪)

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা পদার্থবিজ্ঞান – ২য় পত্র | - | NCTB BOOK
707
707

 

নিজে কর : বাজারে পাওয়া যায় এমন একটি দিক নির্দেশক কম্পাস নাও। একটি পরিবাহী তার দিয়ে একে কয়েক পাক জড়িয়ে নাও। এখন তারের দুই প্রান্ত একটি শুষ্ক কোষের দুই প্রান্তে স্পর্শ করাও। পরিবাহীর ভিতর দিয়ে তড়িৎ প্রবাহ চলছে। কী দেখলে?

  কম্পাসের চুম্বক শলাকাটি তার আগের উত্তর-দক্ষিণ অবস্থান থেকে ঘুরে গেল। আমরা জানি কোনো চুম্বক শলাকা তার সাম্যাবস্থান থেকে তখনই বিচ্যুত হয় যখন এটি একটি চৌম্বক ক্ষেত্রের মধ্যে থাকে।

ওয়েরস্টেডের পরীক্ষা

   কোনো পরিবাহীর ভেতর দিয়ে তড়িৎ প্রবাহিত হলে এর চারপাশে চৌম্বকক্ষেত্রের সৃষ্টি হয়। একে তড়িৎ প্রবাহের চৌম্বক ক্রিয়া বলে । প্রবাহের এই চৌম্বক ক্রিয়া ওয়েরস্টেড 1819 সালে নিম্নোক্ত পরীক্ষার সাহায্যে প্রমাণ করেন। 

চিত্র : ৪.১

  পরীক্ষা : মুক্তভাবে স্থাপিত একটি চুম্বক শলাকা NS-এর কিছু  ওপরে এর দৈর্ঘ্য বরাবর পরিবাহী তার AB স্থাপন করে তারের ভেতর দিয়ে তড়িৎপ্রবাহ চালনা করা হলে চুম্বক শলাকাটি তার সাম্যাবস্থান থেকে বিচ্যুত হয় । চিত্র (৪.১)।

  পরিবাহীতে তড়িৎপ্রবাহের পরিমাণ বাড়ালে চুম্বক শলাকার বিচ্যুতির পরিমাণও বেড়ে যায়। যদি পরিবাহীটিতে প্রবাহের অভিমুখ বিপরীত করে দেওয়া হয়, সেক্ষেত্রেও চুম্বক শলাকার বিচ্যুতি ঘটে- 

    তবে এর ঘুরার দিক আগের ঘুরার দিকের বিপরীত হয়। আবার পরিবাহী তারটি চুম্বক শলাকার নিচে রেখে পরীক্ষাটি সম্পন্ন করাহলেও চুম্বক শলাকার বিচ্যুতি ঘটে। প্রবাহের দিক একই রেখে পরিবাহীটি শলাকার ওপরে | রাখলে শলাকাটি যে দিকে ঘুরে এক্ষেত্রে তার বিপরীত দিকে ঘুরে। পরিবাহীতে প্রবাহ চালনা বন্ধ করা হলে শলাকাটি তার পূর্বের অবস্থানে ফিরে আসে।

     আমরা জানি, মুক্ত অবস্থায় চুম্বক শলাকা ভূ-চুম্বকত্বের প্রভাবে সাম্যাবস্থায় উত্তর-দক্ষিণ বরাবর থাকে। এই চুম্বক শালাকার ওপর যদি অন্য কোনো চৌম্বকক্ষেত্রের প্রভাব থাকে তাহলেই সেটি তার সাম্যাবস্থান থেকে বিচ্যুত হয়। পরিবাহী তারের মধ্য দিয়ে তড়িৎ প্রবাহিত হলে চুম্বক শলাকাটি বিচ্যুত হয় –এর থেকে বোঝা যায় চুম্বক শলাকা যে স্থানে আছে সেখানে একটি চৌম্বকক্ষেত্রের সৃষ্টি হয়েছে। যতক্ষণ প্রবাহ থাকে ততক্ষণই এই চৌম্বক ক্ষেত্র থাকে। সুতরাং ওয়েরস্টেডের পরীক্ষা থেকে প্রমাণিত হয় যে, তড়িৎপ্রবাহের ফলে এর চারপাশে চৌম্বক ক্ষেত্রের সৃষ্টি হয়। এই পরীক্ষা থেকে আরো বোঝা যায় যে, বিভিন্ন বিন্দুতে চৌম্বক ক্ষেত্রের মান ও দিক বিভিন্ন হয়। 

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

এসি থেকে ডিসি
অস্থির ডিসি থেকে স্থির ডিসি
ডিসি থেকে এসি
উচ্চ বিভব থেকে নিম্ন বিভব

অ্যাম্পিয়ারের সূত্র

254
254

     স্থির তড়িতে কুলম্ব সূত্রের সাহায্যে স্থির তড়িৎক্ষেত্র সংক্রান্ত সহজ সমস্যার সমাধান করা সম্ভব। কিন্তু জটিল সমস্যার সমাধানের জন্যে গাউস-এর সূত্রের প্রয়োজন পড়ে। তেমন তড়িতচৌম্বকত্বের ক্ষেত্রে বিয়োঁ-স্যান্ডার সূত্রের সাহায্যে সমস্যার সমাধান করা হয়। সমস্যা সমাধানের সময় জটিল যোগজীকরণ পরিহার করার জন্য অ্যাম্পিয়ারের সূত্রের অবতারণা করা হয়।

   ধরা যাক, একটি পরিবাহী তারের মধ্য দিয়ে I প্রবাহ প্রবাহিত হচ্ছে। পরিবাহীটিকে কেন্দ্র করে r ব্যাসার্ধের একটা বৃত্তাকার পথ কল্পনা করা যাক (চিত্র ৪.১০)। এই বৃত্তের পরিধির উপর সকল বিন্দুতে চৌম্বকক্ষেত্র B হলে, পরীক্ষালব্ধ ফলাফল থেকে পাওয়া যায়,

    Blr

চিত্র :৪.১০

 এখানে, μo2π হচ্ছে সমানুপাতিক ধ্রুবক ।

অতএব,B 2π r=μol

বামপক্ষকে লেখা যায়, B.dl

এখানে dl , বৃত্তাকার যোগজীকরণ পথের সাথে স্পর্শক বরাবর বিরাজ করে।

 

 

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

হল প্রভাব

398
398

     আমরা জানি, চৌম্বকক্ষেত্রে গতিশীল আধান চৌম্বক বল লাভ করে। ফলে আধানটি তার গতিপথ থেকে বিচ্যুত হয়। ১৮৭৯ সালে এডুইন হল দেখান যে, বায়ু বা শূন্যস্থানের মতো কঠিন পরিবাহীর মধ্য দিয়ে চলমান আধানেরও চৌম্বকক্ষেত্র দ্বারা বিচ্যুতি ঘটে। হল আবিষ্কার করেন যে, যখন কোনো প্রবাহবাহী পরিবাহীকে চৌম্বক ক্ষেত্রে স্থাপন করা হয়, তখন প্রবায়ু এবং চৌম্বকক্ষেত্র উভয়ের সাথে লম্বভাবে একটি ভোল্টেজ উৎপন্ন হয় অর্থাৎ বিভব পার্থক্যের সৃষ্টি হয়। এই ঘটনাকে হল প্রভাব বলা হয় ।

আমরা জানি, যে সকল আহিত কণা এক স্থান থেকে অন্যস্থানে যায়, অর্থাৎ যাদের মাধ্যমে আধান স্থানান্তরিত হয় তাদেরকে আধান বাহক (Charge carrier) বলে। যেমন ইলেকট্রন হচ্ছে ঋণাত্মক আধান বাহক। কোনো চৌম্বক ক্ষেত্রে যখন পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহিত হয় অর্থাৎ আধান বাহক চলে তখন আধান বাহকগুলো চৌম্বক বল লাভ করে, ফলে এগুলো তাদের গতিপথ থেকে বিচ্যুত হয়ে এক পাশে জমা হয়। এতে পরিবাহীর দুই পাশের মধ্যে বিভব পার্থক্য সৃষ্টি হয় । পরীক্ষালব্ধ উপাত্ত বিশ্লেষণ করে এই আধান বাহকের প্রকৃতি তথা চিহ্ন অর্থাৎ আধান বাহক ধনাত্মক না ঋণাত্মক এবং তাদের সংখ্যা ঘনত্ব (একক আয়তনে আধান বাহকের সংখ্যা) সম্পর্কে জানা যায়। এই প্রভাব থেকে চৌম্বকক্ষেত্রও পরিমাপ করা যায়। হল প্রভাব যখন আবিষ্কৃত হয় তখনও ইলেকট্রন আবিষ্কৃত হয়নি। ফলে তড়িৎ প্রবাহ যে ইলেকট্রনের প্রবাহ বিজ্ঞানীদের তা জানা ছিল না।

     সংজ্ঞা : কোনো তড়িত্বাহী পরিবাহীকে চৌম্বকক্ষেত্রে স্থাপন করলে তড়িৎ প্রবাহ ও চৌম্বকক্ষেত্র উভয়ের সাথে লম্ব বরাবর একটি বিভব পার্থক্যের সৃষ্টি হয় তথা ভোল্টেজ উৎপন্ন হয়। এ ঘটনাকে হল প্রভাব বলে ।

চিত্র : ৪.১২

 হল প্রভাবের সাহায্যে আধানের প্রকৃতি নির্ণয়

৪.১২ চিত্রে একটি পাতলা পাত আকৃতির পরিবাহী দেখানো হলো। এর মধ্য দিয়ে ধনাত্মক X অক্ষ বরাবর l তড়িৎ প্রবাহ চলছে। ধনাত্মক Y অক্ষ বরাবর একটি সুষম চৌম্বকক্ষেত্র B প্রয়োগ করা হলো। যদি আধান বাহক ইলেকট্রন হয়, তাহলে সেগুলো তড়িৎ প্রবাহের প্রচলিত দিকের বিপরীত দিকে অর্থাৎ ঋণাত্মক X-অক্ষ বরাবর গতিশীল হবে। ধরা যাক, এদের সঞ্চরণ (drift) বেগ v । এগুলো একটি চৌম্বক বল F লাভ করবে। ফ্লেমিঙের বামহস্ত সূত্রানুসারে (অনুচ্ছেদ ৪.৮) এ বলের দিক হবে ধনাত্মক Z-অক্ষ বরাবর অর্থাৎ ওপরের দিকে। সুতরাং ইলেকট্রনগুলো ওপরের দিকে বিক্ষিপ্ত হবে এবং ওপরের প্রান্তে এসে ইলেকট্রন জমা হবে, ফলে নিচের প্রান্তে অতিরিক্ত ধনাত্মক আধান জমা হবে [চিত্র ৪.১৩ ক]।

   পরিবাহীর দুই প্রান্তে বিপরীত জাতীয় আধান জমা হওয়ায় দুই প্রান্তে বিভব পার্থক্যের সৃষ্টি হবে এবং তড়িৎক্ষেত্রের উদ্ভব হবে। এই তড়িৎক্ষেত্র E দিক তথা তড়িৎ প্রাবল্যের দিক হবে ধনাত্মক আধান থেকে ঋণাত্মক আধানের দিকে অর্থাৎ পরিবাহীর নিচের প্রান্ত থেকে ওপরের প্রান্তের দিকে। এ তড়িৎক্ষেত্রের দরুন ঋণাত্মক আধান বাহক ইলেকট্রনগুলো তড়িৎক্ষেত্রের বিপরীত দিকে অর্থাৎ পরিবাহীর ওপরের প্রান্ত থেকে নিচের প্রান্তের দিকে বল লাভ করবে এবং নিচের প্রান্তের দিকে বিক্ষিপ্ত হতে চেষ্টা করবে। এতে ইলেকট্রনের উপর ক্রিয়াশীল চৌম্বক বল (Fm) এবং তড়িৎক্ষেত্রের জন্য সৃষ্ট তড়িৎ বল (Fe) পরস্পর বিপরীতমুখী হয়। এদের মান সমান হলে সাম্যাবস্থার সৃষ্টি হবে, ফলে ইলেকট্রনগুলো আর ওপরের দিকে বিক্ষিপ্ত হবে না। একটি ভোল্টমিটার দ্বারা পরিবাহীর দুই প্রান্তের বিভব পার্থক্য পরিমাপ করা যেতে পারে। এই বিভব পার্থক্যকে হল ভোল্টেজ বলা হয়।

চিত্র :৪.১৩

    আর আধান বাহক ধনাত্মক হলে সেগুলো প্রবাহের অভিমুখে অর্থাৎ ধনাত্মক X-অক্ষ বরাবর বেগে গতিশীল হবে [চিত্র ৪.১৩ খ]। ফ্লেমিঙের বামহস্ত সূত্রানুসারে (অনুচ্ছেদ ৪.৮) এগুলোও ঊর্ধ্বমুখী qv × B বল অনুভব করে। এর ফলে পরিবাহীর ওপরের প্রান্তে ধনাত্মক আধান জমা হবে এবং নিচের প্রান্তে অতিরিক্ত ঋণাত্মক আধান জমা হবে । সুতরাং এ ক্ষেত্রে পরিবাহীতে উদ্ভূত হল ভোল্টেজের চিহ্ন ইলেকট্রনের বিক্ষেপের ফলে উদ্ভূত হল ভোল্টেজের চিহ্নের বিপরীত হবে। সুতরাং হল ভোল্টেজের চিহ্ন থেকে আধান বাহুকের চিহ্ন তথা প্রকৃতি অর্থাৎ আধান বাহক ধনাত্মক না ঋণাত্মক তা জানা যায়।

     কোনো পদার্থের মধ্য দিয়ে ধনাত্মক X - অক্ষ বরাবর তড়িৎ প্রবাহ চালনা করে যদি ধনাত্মক Y-অক্ষ বরাবর একটি চৌম্বকক্ষেত্র প্রয়োগ করা হয়, তাহলে Z-অক্ষ বরাবর হল ভোল্টেজের বা বিভব পার্থক্যের উদ্ভব হবে। এখন ভোল্টমিটার বা পটেনশিওমিটার দ্বারা এই বিভব পার্থক্য পরিমাপ করলে যদি দেখা যায় ওপরের প্রান্তের বিভব নিচের প্রান্তের বিভবের চেয়ে বেশি তাহলে বুঝতে হবে আধান বাহক ধনাত্মক। আর যদি দেখা যায় পদার্থটির নিচের প্রান্তের বিভব ওপরের প্রান্তের চেয়ে বেশি তাহলে বুঝতে হবে আধান বাহক ঋণাত্মক। 

     সেমিকন্ডাক্টরে যেমন সিলিকন, জার্মেনিয়াম প্রভৃতিতে যে আধান বাহকের গতির জন্য তড়িৎ প্রবাহ চলে তা ধনাত্মক (হোল) বা ঋণাত্মক (ইলেকট্রন) উভয়ই হতে পারে। সুতরাং হল প্রভাব থেকে দেখা যায় যে, সেমিকন্ডাক্টরের ক্ষেত্রে দুই ধরনের আধান বাহকের জন্যই তড়িৎ প্রবাহ চলে।

   হল ভোল্টেজ : কোনো তড়িৎবাহী পরিবাহীকে চৌম্বকক্ষেত্রে স্থাপন করলে তড়িৎ প্রবাহ ও চৌম্বকক্ষেত্র উভয়ের সাথে লম্ব বরাবর যে বিভব পার্থক্যের সৃষ্টি হয় তথা ভোল্টেজ উৎপন্ন হয় তাকে হল বিভব পার্থক্য বা হল ভোল্টেজ বলে।

 

হল ভোল্টেজের রাশিমালা

   ৪.১২ চিত্রে একটি চ্যাপ্টা পাত আকৃতির পরিবাহী দেখানো হয়েছে। এর মধ্যদিয়ে ধনাত্মক X-অক্ষ বরাবর তড়িৎ প্রবাহ I চলছে । এর সমকোণে অর্থাৎ ধনাত্মক Y অক্ষ বরাবর একটি সুষম চৌম্বকক্ষেত্র B প্রয়োগ করা হলো।

ধরা যাক,

 A = পরিবাহীর প্রস্থচ্ছেদের ক্ষেত্রফল

 d = পরিবাহীর প্রস্থ অর্থাৎ এর ওপর ও নিচের এই দুই প্রাস্তের দূরত্ব

 t= পরিবাহীর পুরুত্ব

 B = চৌম্বকক্ষেত্র

 q = প্রতিটি আধান বাহকের আধান

 v = আধান বাহকের সঞ্চরণ বেগ

 n = পরিবাহীর প্রতি একক আয়তনে আধান বাহকের সংখ্যা

 I = তড়িৎ প্রবাহ 

 VH = হল ভোল্টেজ

 E = হল তড়িৎক্ষেত্র তীব্রতা বা প্রাবল্য

এখন আধান বাহকের উপর ক্রিয়াশীল চৌম্বক বল,

 Fm = qvB (যেহেতু v এবং B সমকোণে

:. θ = 90°)

আবার, পরিবাহীর দুই প্রান্তের বিভব পার্থক্য তথা তড়িৎক্ষেত্রের। আধান বাহকের ওপর তড়িৎ বল

Fe=qE=qVHd

সাম্যাবস্থায়,

Fm = Fe

qv B = qVHd

বা, VH = Bvd

    সুতরাং দেখা যায়, যদি পরিবাহীর প্রস্থ d এবং চৌম্বকক্ষেত্র জানা থাকে, তাহলে হল ভোল্টেজ VH আমরা আধান বাহকের সঞ্চরণ বেগ বের করতে পারি। পরিমাপ করে

  আবার, সঞ্চরণ বেগের সাথে তড়িৎ প্রবাহের সম্পর্ক হলো

 I = nA vq

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

চৌম্বক ক্ষেত্রে তড়িৎবাহী পরিবাহীর ওপর বল ও টর্ক

311
311

     

নিজে কর

একটি দণ্ড চুম্বককে খাড়া করে বা অন্যভাবে এমন করে রাখো যেন এর যে কোনো একটি মেরুর পাশে একটি পরিবাহী তার মোটামুটি মুক্তভাবে ঝুলতে পারে। এখন এই তারের দুই মাথা একটি শুষ্ক কোষের দুই প্রান্তের সাথে সংযুক্ত কর। কী দেখলে?

    ঝুলানো তারটি তার অবস্থান থেকে সরে গেল। তড়িৎবাহী তারটি একটি বল লাভ করে বলে এটি স্থানচ্যুত হয়। আমরা জানি, চৌম্বকক্ষেত্র গতিশীল আধানের ওপর বল প্রয়োগ করে। সুতরাং চৌম্বকক্ষেত্র তড়িৎবাহী পরিবাহীর গতিশীল আধানগুলোর ওপর তথা পরিবাহীর উপর অবশ্যই বল প্রয়োগ করবে। আমরা এখন তড়িৎবাহী পরিবাহীর উপর চৌম্বকক্ষেত্রের প্রযুক্ত এই বল নির্ণয় করব। ৪.১৪ চিত্রে একটি সুৰম চৌম্বকক্ষেত্রের দিকের সাথে লম্বভাবে স্থাপিত

চিত্র :৪.১৪

   একটি পরিবাহীকে দেখা যাচ্ছে। চিত্রে X চিহ্ন থেকে বোঝা যাচ্ছে সুম চৌম্বকক্ষেত্র  B এর অভিমুখ হচ্ছে কাগজের তলের লম্ব বরাবর ভেতরের দিকে। পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহ / ৰামদিক থেকে ডানদিকে প্রবাহিত হচ্ছে। সুতরাং আধান বাহক ইলেকট্রন ডানদিক থেকে বামদিকে গতিশীল।

ধরা যাক,

l = পরিবাহীর দৈর্ঘ্য

A = পরিবাহীর প্রস্থচ্ছেদের ক্ষেত্রফল

n = পরিবাহীর প্রতি একক আয়তনে ইলেক্ট্রনের সংখ্যা

q = প্রতিটি ইলেকট্রনের আধান

v = ইলেকট্রনের সঞ্চরণ বা তাড়ন বেগ

B = চৌম্বকক্ষেত্রের মান

I = পরিবাহীতে তড়িৎ প্রবাহ

যেহেতু তড়িৎবাহী পরিবাহীটি চৌম্বকক্ষেত্রের সাথে লম্বভাবে স্থাপন করা হয়েছে, তাই পরিবাহীর প্রতিটি ইলেক্ট্রনের ওপর প্রযুক্ত চৌম্বক বল,

Fm = qvB sin 90° = gvB

এখন পরিবাহীতে মোট ইলেকট্রন সংখ্যা N হলে পরিবাহীর সকল ইলেকট্রনের ওপর ক্রিয়াশীল বল তথা পরিবাহীর ওপর ক্রিয়াশীল বল,

F = NFm

কিন্তু N = n x পরিবাহীর আয়তন

  = nAl

:- F = nAl  Fm = nAlqvB

কিন্তু I = nAqv

: F = ILB... (4.19)

কিন্তু তড়িৎবাহী পরিবাহী যদি চৌম্বকক্ষেত্রের সমকোণে না থেকে θ কোণ উৎপন্ন করে তাহলে একটি ইলেক্ট্রনের ওপর প্রযুক্ত বল হবে,

Fm = qvB sin  θ এবং সমগ্র পরিবাহীর ওপর বল হবে

F = IIB sin  θ... (4.20)

    এই সমীকরণকে ভেক্টররূপে নিম্নোক্তভাবে দুটি ভেক্টরের ভেক্টর গুণফল হিসেবে লিখলে ঐ সমীকরণ থেকে প্রযুক্ত বলের মান ও দিক উভয়ই পাওয়া যায়।

F=Il×B ..  (4.21)

  এখানে ভেক্টর  l→এর মান পরিবাহীর দৈর্ঘ্য নির্দেশ করে। l→ এর দিক ধরা হয় ধনাত্মক আধানের গতির দিকে তথা তড়িৎ প্রবাহের দিকে।

N পাকের কোনো কুণ্ডলী হলে তার ওপর প্রযুক্ত বল

F=NIl×B

 বলের দিক :

   তড়িৎবাহী পরিবাহীর ওপর প্রযুক্ত বল F→ এর দিক সর্বদাই তড়িৎ প্রবাহ এবং B→ এর অভিমুখের সাথে লম্ব। ভেক্টর গুণনের দিক সম্পর্কিত ডানপাকের ক্রুর নিয়ম থেকে এর দিক পাওয়া যায়। তড়িৎ প্রবাহ তথা পরিবাহী এবং চৌম্বকক্ষেত্র B→  এর সমতলে একটি ডান পাকের স্কুকে লম্বভাবে স্থাপন করে তড়িৎ প্রবাহের দিক থেকে B→  এর দিকে ক্ষুদ্রতর কোণে ঘুরালে স্কুটি যে দিকে অগ্রসর হবে বল F→  এর দিক হবে সেদিকে।

 

চিত্র :৪.১৫

 বিশেষ ক্ষেত্র I :

   যদি তড়িৎ প্রবাহ তথা পরিবাহী চৌম্বকক্ষেত্রের সমকোণে থাকে, তাহলে বলের দিক ফ্লেমিঙের বামহস্ত সূত্র থেকে পাওয়া যায় ।

ফ্লেমিঙের বামহস্ত সূত্র: 

   বাম হাতের তর্জনী, মধ্যমা ও বৃদ্ধাঙ্গুলী পরস্পর সমকোণে প্রসারিত করে তর্জনীকে চৌম্বকক্ষেত্রের অভিমুখে এবং মধ্যমাকে প্রবাহের অভিমুখে স্থাপন করলে বৃদ্ধাঙ্গুলী পরিবাহীর ওপর প্রযুক্ত বলের অভিমুখ তথা পরিবাহীর গতির বা বিক্ষেপের দিক নির্দেশ করে [চিত্র ৪.১৫]। 

বিশেষ ক্ষেত্র II : 

  যদি তড়িৎবাহী পরিবাহীটি চৌম্বকক্ষেত্রের সমা।ন্তরালে থাকে অর্থাৎ প্রবাহ ও চৌম্বকক্ষেত্রের অন্তর্ভুক্ত কোণ θ = 0° বা 180° হয়, তাহলে (4.17) সমীকরণ অনুসারে পরিবাহীর ওপর বল হবে,

 F=Il B sin0° =0 

সুতরাং চৌম্বকক্ষেত্রের সমান্তরালে স্থাপিত তড়িৎবাহী পরিবাহী কোনো বল অনুভব করে না।  

চৌম্বকক্ষেত্রে কোনো ক্ষুদ্র লুপের ওপর টর্ক

  

একটি লম্বা পরিবাহী ভার নিয়ে এটিকে ভাঁজ করে একটি আয়তাকার কুণ্ডলীর আকৃতি দাও (চিত্র ৪.১৭)।

চিত্র :৪.১৭

 সম্ভব হলে কয়েক পাকের কুণ্ডলী তৈরি করতে পারো। একে মোটামুটি মুক্তভাবে একটি U আকৃতির বা অশ্বক্ষুরাকৃতি চুম্বকের দুই মেরুর মাঝখানে এমনভাবে স্থাপন কর যেন এর সমতল ও চুম্বকের মেরুদ্বয় একই সমতলে অবস্থান করে। এখন এই কুণ্ডলীর দুই প্রান্ত একটি অ কোষের দুই প্রান্তে সংযুক্ত কর। কুণ্ডলীর মধ্য দিয়ে তড়িৎ প্রবাহিত হচ্ছে। কী দেখলে?

   কুণ্ডলীটি তার সাম্যাবস্থান থেকে ঘুরে গেল। কারণ চৌম্বকক্ষেত্রে স্থাপিত এই প্রবাহবাহী কুণ্ডলী বা লুপ একটি টর্ক লাভ করে ফলে ঘুরে যায়।

টর্কের রাশিমালা

  একটি আয়তাকার অন্তরিত তামার কুণ্ডলী আকৃতির ক্ষুদ্র বর্তনী WXYZ বিবেচনা করা যাক [চিত্র ৪.১৮)। এ কুণ্ডলীটিকে সুষম চৌম্বকক্ষেত্রের কোনো স্থানে এমনভাবে স্থাপন করা হলো যেন কুণ্ডলীতল চৌম্বকক্ষেত্রের সমান্তরাল থাকে।

   ধরা যাক,

L = কুণ্ডলীর দৈর্ঘ্য

b= কুণ্ডলীর প্রস্থ

.: A = L x b = কুণ্ডলীর ক্ষেত্রফল

চিত্র :৪.১৮

 N = কুণ্ডলীর পাক সংখ্যা

 B = সুষম চৌম্বকক্ষেত্রের মান 

  I = কুণ্ডলীতে তড়িৎ প্রবাহ

  কুণ্ডলীর দুই বিপরীত বাহু WX এবং YZ চৌম্বকক্ষেত্রের সমান্তরাল থাকায় এদের ওপর কোনো বল প্রযুক্ত হবে না, কেননা বল,

 F = NlbB sin 0 = 0 [.0=0° বা, 180°] 

   কিন্তু ZWএবং XY বাহু দুটি চৌম্বকক্ষেত্রের সমকোণে থাকায় এদের

প্রত্যেকের ওপর ক্রিয়াশীল বলের মান

F = NILB sin 90° = NILB

   কিন্তু বাহু দুটিতে প্রবাহের অভিমুখ বিপরীতমুখী হওয়ায় ফ্লেমিঙের বামহস্ত সূত্রানুযায়ী বাহু দুটির ওপর ক্রিয়াশীল বল দুটির দিকও বিপরীতমুখী হবে। সুতরাং কুণ্ডলীর দুই বাহুর ওপর দুটি সমান, সমান্তরাল ও বিপরীতমুখী বল ক্রিয়া করে এবং এদের ক্রিয়ামুখ একই সরলরেখায় না হওয়ায় এরা একটি দ্বন্দ্বের সৃষ্টি করে এবং এ দ্বন্দ্ব কুণ্ডলীটিকে এর মধ্যবিন্দু দিয়ে দৈর্ঘ্যের সাথে সমান্তরালে অতিক্রমকারী অক্ষ PQ এর সাপেক্ষে ঘুরাতে চেষ্টা করে। এ দ্বন্দ্বের ভ্রামক তথা টর্ক হলো,

  π = বল x বলদ্বয়ের তথা বাহু দুটির মধ্যকার লম্ব দূরত্ব

 = Fb

= NILBb = NILbB

 :. τ = NIAB..  (4.22)

   যদি চৌম্বকক্ষেত্র কুণ্ডলী তলের সমান্তরাল না হয়ে কুণ্ডলী তলের সাথে কোণে ক্রিয়া করে তাহলে কুণ্ডলী তল বরাবর চৌম্বকক্ষেত্রের উপাংশ হবে B cos Ψ  এবং টর্ক হবে,

τ = NIAB cos Ψ .. (4.22 ক) 

  যেহেতু B কুণ্ডলী তলের সাথে Ψ কোণ উৎপন্ন করে, সুতরাং B কুণ্ডলী তলের লম্বের সাথে 90° - Ψ =  θ কোণB উৎপন্ন করবে । 

 :- Ψ = 90° -  θ সুতরাং (4.22 ক) সমীকরণ দাঁড়ায়

 τ = NIAB cos(90° -  θ )

বা, τ = NIAB sin θ    … (4.22 খ)

   এখন A কে কুণ্ডলী তলের লম্ব বরাবর একটি ভেক্টর A হিসেবে গণ্য করলে A এবং B এর অন্তর্ভুক্ত কোণ হয়  θ। যেহেতু টর্ক একটি ভেক্টর রাশি তাই (4.22 খ) সমীকরণকে নিম্নোক্তভাবে দুটি ভেক্টরের ভেক্টর গুণফল হিসেবে প্রকাশ করলে ঐ সমীকরণ থেকে টর্কের মান ও দিক পাওয়া যায়।

 τ =A × B.. (4.23)

  এই A কে কুণ্ডলীর চৌম্বক ভ্রামক M বলে ।

:- M =A.. (4.24)

  এখন (4.26) কে আমরা লিখতে পারি,

τ = M × B... (4.25)

   প্রবাহবাহী কুন্ডলীর ক্ষেত্রফল ভেক্টর, A

   তড়িৎ প্রবাহবাহী কুণ্ডলীর ক্ষেত্রফল A কে একটি ভেক্টর A হিসেবে গণ্য করা হয় যার মান কুণ্ডলীর ক্ষেত্রফলের সমান এবং এর দিক কুণ্ডলীর তলের সাথে লম্ব। A এর দিক ডানহস্ত নিয়ম থেকে পাওয়া যায়। ডানহাতের চারটি আঙ্গুল কুণ্ডলীর মধ্যে প্রবাহ যে দিকে চলছে সে দিকে মুষ্টিবদ্ধ করলে প্রসারিত বৃদ্ধাঙ্গুলী A এর দিক নির্দেশ করে । এই নিয়মানুসারে কুণ্ডলীর মধ্যে প্রবাহ ঘড়ির কাঁটার দিকে চললে A এর দিক হবে কুণ্ডলী তলের লম্ব বরাবর ভেতরের দিকে, আর ঘড়ির কাঁটার বিপরীত দিকে হলে A এর দিক হবে লম্ব বরাবর বাইরের দিকে ।

    প্রবাহবাহী কুণ্ডলীর চৌম্বক ভ্রামক, M

সংজ্ঞা : কোনো প্রবাহবাহী কুণ্ডলীর তড়িৎ প্রবাহ এবং কুণ্ডলীর ক্ষেত্রফল ভেক্টরের গুণফলকে ঐ কুণ্ডলীর চৌম্বক ভ্রামক বলে।

    কুণ্ডলীর পাক সংখ্যা N তড়িৎপ্রবাহ I এবং ক্ষেত্রফল ভেক্টর A হলে, চৌম্বক ভ্রামক M হবে

 M = NIA

দিক : চৌম্বক ভ্রামকের দিক হলো ক্ষেত্রফল ভেক্টর A এর দিকে। উপরে বর্ণিত ডানহস্ত নিয়ম থেকে এই দিক পাওয়া যায় ।

 একক : চৌম্বক ভ্রামকের একক হচ্ছে অ্যাম্পিয়ার মিটার২ (Am2)।

বি: দ্র:

 ১। যদিও কুণ্ডলীর সাপেক্ষে B এর একটি বিশেষ দিকের জন্য এই টর্ক হিসেবে করা হয়েছে, কিন্তু টর্কের উপরিউক্ত সমীকরণ B এর যে কোনো দিকের জন্য প্রযোজ্য ।

২। টর্কের উপরিউক্ত সমীকরণ যদিও আয়তাকার কুণ্ডলীর জন্য প্রতিপাদন করা হয়েছে, কিন্তু এটি যে কোনো

আকৃতির বর্তনীর জন্য প্রযোজ্য

 

Content added || updated By

কক্ষপথে ঘুর্ণায়মান ইলেকট্রন

258
258

    পদার্থের সাথে সংশ্লিষ্ট বিভিন্ন চৌম্বক ঘটনা পর্যালোচনা করে দেখা যায় যে, চৌম্বকত্ব হচ্ছে পদার্থের পারমাণবিক ধর্ম, পদার্থের অন্তর্জাত (intrinsic) কোনো ধর্ম নয়। এই ধারণার ওপর ভিত্তি করে সিদ্ধান্তে আসা যায় যে, পদার্থের সকল চৌম্বক ধর্ম ইলেকট্রনের গতির সাহায্যে ব্যাখ্যা করা যায়। সকল পরমাণুতে ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে নির্দিষ্ট কক্ষপথে পরিভ্রমণ করে যেখানে ইলেকট্রনের কৌণিক ভরবেগ হচ্ছে  h2π এর সরল গুণিতক। ইলেকট্রন যখন নিউক্লিয়াসকে কেন্দ্র করে ঘুরে তখন তা একটি প্রবাহ লুপ তৈরি করে। আমরা জানি যে, কোনো পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহিত হলে তার চারদিকে একটা চৌম্বক ক্ষেত্রের উদ্ভব হয়। ইলেকট্রনের কক্ষীয় গতির ফলে যে প্রবাহ লুপ তৈরি হয় তা পারমাণবিক প্রবাহ সৃষ্টি করে । একে কখনো কখনো অ্যাম্পিয়ার প্রবাহ বলা হয়ে থাকে। এই পারমাণবিক প্রবাহ বা অ্যাম্পিয়ার প্রবাহের জন্যে কক্ষীয় চৌম্বক ভ্রামকের উদ্ভব হয় যা পদার্থে চৌম্বকত্ব সৃষ্টির জন্য মূলত দায়ী ।

    যেহেতু সকল পদার্থেই ইলেকট্রন থাকে তাহলে মনে হতে পারে সকল পদার্থ চুম্বক নয় কেন? শুধু চুম্বকিত লোহা বা সামান্য গুটিকয়েক বস্তু লোহা জাতীয় বস্তুকে আকর্ষণ করতে পারে কেন? এর উত্তরে বলা যায়, বেশিরভাগ পদার্থের বিপরীতমুখী চৌম্বক ভ্রামক জোড়ায় জোড়ায় বিরাজ করে একে অপরের প্রভাব নাকচ করে দেয়। ফলে কোনো লব্ধি চৌম্বকত্ব পরিলক্ষিত হয় না। পদার্থে শক্তিশালী চুম্বকত্বের উদ্ভব তখন ঘটে যখন পরমাণুতে বিজোড় সংখ্যক ইলেকট্রন থাকে এবং কক্ষীয় চৌম্বক ভ্রামক বিশেষভাবে বিন্যস্ত থাকে। আবার এভাবেও বলা যায় যে, প্রকৃতপক্ষে সকল পদার্থই চুম্বকত্ব প্রদর্শন করে। চুম্বক বলতে আমরা ফেরোচৌম্বক পদার্থ যেমন দণ্ড চুম্বক বা কম্পাস কাঁটাকে বুঝে থাকি যাদের চৌম্বক ধর্ম যথেষ্ট শক্তিশালী, সে রকম না হলেও প্রত্যেক পদার্থেই খুব ক্ষীণ কিছু না কিছু চৌম্বকত্ব থাকে যেগুলো নিয়ে আমরা পরে আলোচনা করবো।

কক্ষপথে ইলেকট্রনের ঘূর্ণনের ফলে সৃষ্ট চৌম্বকক্ষেত্র ও চৌম্বক ভ্রামক 

    বিয়োঁ-স্যাভার সূত্র থেকে আমরা জানি, একটি প্রবাহবাহী বৃত্তাকার কুণ্ডলীর কেন্দ্রে চৌম্বকক্ষেত্র পাওয়া যায়

   B=μoI2r

    এখন e আধানবিশিষ্ট একটি ইলেকট্রনের যদি তার কক্ষপথে একবার আবর্তন করতে T সময় লাগে তাহলে তড়িৎ প্রবাহ হবে I=eT । কিন্তু কক্ষপথের ব্যাসার্ধ, r এবং ইলেকট্রনের বেগ v হলে

  T=2πrv সুতরাং I=e×v2πr

:- B=μo2reT=μo2rev2πr

  কক্ষপথে ঘূর্ণীয়মান ইলেকট্রনের কক্ষীয় চৌম্বক ভ্রামক

Morb=IA=ev2πr×πr2=evr2

এখানে m = ইলেকট্রনের ভর । কিন্তু বোরের তত্ত্ব থেকে ইলেকট্রনের কৌণিক ভরবেগ, L=mvr=nh2π

সুতরাং Morb=e2m×L=n eh4πm.. (4.28)

প্রথম কক্ষের জন্য n = 1 ।

সুতরাং প্রথম বোর কক্ষের জন্য সৃষ্ট চৌম্বক ভ্রামকের মান Morb=eh4πm । একে বোর ম্যাগনেটোন বলা হয়।

(4.28) সমীকরণের ভেক্টর রূপ হচ্ছে,

Morb=eL2m.. (4.29)

   এখানে ঋণাত্মক চিহ্ন ইলেকট্রনের কৌণিক ভরবেগ ও চৌম্বক ভ্রামকের বিপরীতমুখিতা বোঝায়। ইলেকট্রনের চার্জ ঋণাত্মক হওয়ায় এরকমটি হয়। 

ইলেকট্রন স্পিন ও চৌম্বক ক্ষেত্র (Electron Spin and Magnetic field)

   ইলেকট্রন হচ্ছে আধানযুক্ত কণা। একটি পরমাণুর মধ্যে ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে যেমন ঘুরতে থাকে তেমনি লাটিমের মতো নিজের অক্ষের চারদিকেও পাক খায়। নিজের অক্ষের ওপর এ ঘূর্ণনকে বলে স্পিন (spin) |

   এই স্পিন বা ঘূর্ণনের জন্য কৌণিক ভরবেগ সৃষ্টি হয় এবং ইলেকট্রনের ঋণাত্মক চার্জের জন্য একটি চৌম্বক মোমেন্ট Ms বা μs সৃষ্টি হয়, যার দিক স্পিনের কারণে সৃষ্ট কৌণিক ভরবেগ S এর বিপরীত। ইলেকট্রনের এই স্পিনের জন্য চৌম্বক মোমেন্ট ও কৌণিক ভরবেগের মধ্যে সম্পর্ক হচ্ছে,

 μs=-emS

   আমরা জানি, আধানযুক্ত কণার গতির জন্যে পরমাণুর মধ্যে প্রত্যেক ইলেকট্রন স্বতন্ত্র চৌম্বকক্ষেত্র তৈরি করে। পরমাণুর মধ্যে ইলেকট্রনগুলো যে কোনো অভিমুখে ঘূর্ণায়মান থাকে। কোনো পরমাণুতে যদি সমান সংখ্যক ইলেকট্রন বিপরীত অভিমুখে ঘূর্ণনরত থাকে তাহলে একটি ইলেকট্রন দ্বারা উৎপন্ন চৌম্বকক্ষেত্র বিপরীত অভিমুখে ঘূর্ণায়মান অপর ইলেকট্রনের চৌম্বকক্ষেত্র দ্বারা নাকচ হয়ে যায়। অর্থাৎ ঐ পরমাণুতে কোনো লব্ধি চৌম্বকক্ষেত্র থাকে না। এ ধরনের পরমাণু দ্বারা গঠিত পদার্থই হচ্ছে অচৌম্বক পদার্থ। এ সকল পদার্থকে খুব শক্তিশালী কোনো চৌম্বকক্ষেত্রের মধ্যে স্থাপন করলে চৌম্বকক্ষেত্রের প্রভাবে এই পদার্থের পরমাণুর ইলেকট্রনের ঘূর্ণন সামান্য প্রভাবিত হয়ে এ সকল পদার্থে খুবই ক্ষীণ চৌম্বকত্ব দেখা যেতে পারে যাকে ডারাচৌম্বকত্ব (Diamagnetism) বলে। এ ধরনের অচৌম্বক পদার্থকে ডায়াচৌম্বক পদার্থ বলে। পানি, তামা, বিসমাথ, অ্যান্টিমনি ইত্যাদি ডায়াচৌম্বক পদার্থ ।

পক্ষান্তরে কোনো পরমাণুতে যদি বিপরীত অভিমুখে ঘূর্ণায়মান ইলেকট্রনের সংখ্যা সমান না হয় তাহলে প্রত্যেক ইলেকট্রন দ্বারা সৃষ্ট চৌম্বকক্ষেত্র পরস্পরের ক্রিয়া নাকচ করতে পারে না। ফলে পরমাণুটি একটি লব্ধি চৌম্বকক্ষেত্র লাভ করে এবং পরমাণুটি একটি ক্ষুদ্র চুম্বক হিসেবে আচরণ করে, যাকে চৌম্বক দ্বিমেরু বা চৌম্বক দ্বিপোল (magnetic dipole) বলে। এরকম পরমাণু চুম্বক দ্বারা গঠিত পদার্থের ওপর যদি কোনো চৌম্বকক্ষেত্র প্রয়োগ করা না হয় তাহলে চৌম্বক দ্বিপোলগুলো বিক্ষিপ্তভাবে ছড়িয়ে থাকে বলে পদার্থটিতে কোনো লব্ধি চৌম্বকক্ষেত্র পরিলক্ষিত হয় না। কিন্তু যদি কোনো চৌম্বকক্ষেত্র প্রয়োগ করা হয় তাহলে এই চুম্বক দ্বিপোলগুলো আংশিকভাবে বিন্যস্ত হয়ে সামান্য পরিমাণ চুম্বকত্ব প্রদর্শন করে। এদেরকে প্যারাচৌম্বক পদার্থ (Paramagnetic material) বলে।

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

পৃথিবীর চৌম্বকত্ব এবং এর চৌম্বকত্ব উপাদান

251
251

    কোনো চুম্বক শলাকা বা দণ্ড চুম্বককে অনুভূমিকভাবে এর ভারকেন্দ্রে মুক্ত অবস্থায় স্থাপন করলে এটি সব সময়ই মোটামুটি উত্তর-দক্ষিণ দিক বরাবর অবস্থান করে। এ থেকে বোঝা যায় যে, ভূপৃষ্ঠে একটি চৌম্বকক্ষেত্র বিদ্যমান । 1600 খ্রিস্টাব্দে চিকিৎসাবিজ্ঞানী ডা. গিলবার্ট বিভিন্ন পরীক্ষা দ্বারা প্রমাণ করেন যে, পৃথিবী একটি চুম্বকের ন্যায় আচরণ করে।

চিত্র :৪.১৯

    চিত্র ৪.১৯ হতে পৃথিবীর চৌম্বকক্ষেত্র সম্পর্কে মোটামুটি ধারণা করা যেতে পারে। একটি চুম্বক শলাকাকে বা একটি দণ্ড চুম্বককে কোনো চৌম্বকক্ষেত্রে সম্পূর্ণ মুক্তভাবে স্থাপন করলে তার অক্ষ ঐ চৌম্বকক্ষেত্র বরাবর স্থাপিত হয়। কোনো চুম্বক শলাকাকে তার ভারকেন্দ্রে যদি সম্পূর্ণ মুক্ত অবস্থায় এমনভাবে স্থাপন করা হয় যে এটি উল্লম্ব তল বরাবর মুক্তভাবে ঘুরতে পারে এবং এই চুম্বক শলাকাকে যদি পৃথিবীর এক মেরু থেকে অন্য মেরুর দিকে সরিয়ে নেয়া হয় তবে দেখা যায় যে চুম্বক শলাকার অক্ষ এবং অনুভূমিকের অন্তর্ভুক্ত কোণ ভূ- পৃষ্ঠের বিভিন্ন স্থানে বিভিন্ন হয়। এ থেকে বোঝা যায় যে, ভূ-পৃষ্ঠের বিভিন্ন স্থানে লব্ধি চৌম্বকক্ষেত্রের দিক বিভিন্ন । ঐ কোণকেই বিনতি কোণ বলা হয়। বিষুব রেখার নিকট এর মান শূন্য এবং ভূ-পৃষ্ঠের দুটি স্থানে এর মান 90° হয়। একটি স্থান উত্তর কানাডার হাডসন বে এলাকায় এবং অপর স্থানটি অ্যান্টার্কটিকার নিকটে । ভূ-পৃষ্ঠের এই দুই বিন্দুকে তাই পৃথিবীর চৌম্বক মেরু বলা হয়। এগুলো ভৌগোলিক মেরু নয়। পৃথিবীর চৌম্বক মেরু দুটির সংযোজক সরলরেখা এবং ভৌগোলিক মেরু দুটির সংযোজক সরলরেখার অন্তর্গত কোণ অর্থাৎ পৃথিবীর চৌম্বক অক্ষ এবং ভৌগোলিক অক্ষের অন্তর্গত কোণ প্রায় 11.5°। পৃথিবীর চৌম্বক দক্ষিণ মেরু ভৌগোলিক উত্তর মেরু থেকে প্রায় 1750 km পশ্চিমে এবং চৌম্বক উত্তর মেরু ভৌগোলিক দক্ষিণ মেরুর পূর্বে অবস্থিত ।

চিত্র :৪.২০

  ভৌগোলিক মধ্যতল (Geographic Meridian) :

   পৃথিবীর কোনো স্থানে ভৌগোলিক উত্তর ও দক্ষিণ মেরু বরাবর কল্পিত উল্লম্বতলকে ঐ স্থানের ভৌগোলিক মধ্যতল বলে [চিত্র ৪.২০ ]।

চৌম্বক মধ্যভল (Magnetic Meridian) : মুক্তভাবে সাম্যাবস্থায় অবস্থিত কোনো চুম্বকের চৌম্বক অক্ষ বরাবর কল্পিত উল্লম্ব তলকে ঐ স্থানের চৌম্বক মধ্যতল বলে [চিত্র ৪.২০] ।

   মুক্তভাবে সাম্যাবস্থায় অবস্থিত কোনো চুম্বক ঠিক ভৌগোলিক উত্তর-দক্ষিণ বরাবর থাকে না। তাই ভৌগোলিক মধ্যতল ও চৌম্বক মধ্যতল এক নয়। ভৌগোলিক মধ্যতল ও চৌম্বক মধ্যতলের মধ্যে কিছু কৌণিক ব্যবধান থাকে। ঢাকায় এই ব্যবধান 0.5° ।

  কোনো স্থানে ভৌগোলিক মধ্যতল ও চৌম্বক মধ্যতলের অন্তর্ভুক্ত কোণকে ঐ স্থানের বিচ্যুতি বলে।

 পৃথিবীর চৌম্বক উপাদান (মাগ্নেতিচ

 Elements of Earth)

 কোনো স্থানে পৃথিবীর চৌম্বকক্ষেত্রকে সম্পূর্ণরূপে বর্ণনা করার জন্য সাধারণত নিম্নোক্ত রাশি তিনটি নির্ণয় করা হয়।

(ক) বিচ্যুতি,  θ (খ) বিনতি, 

(গ) ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ, BH বা, H

  এ তিনটি রাশি পছন্দ করার কারণ হচ্ছে সাহায্যে নির্ণয় করা যায়। এগুলোকে কোনো স্থানের ভূ-চুম্বকের মৌলিক উপাদান বলা হয়। 

   যে সকল রাশির সাহায্যে কোনো স্থানে ভূ-চুম্বকের চৌম্বকক্ষেত্রকে সম্পূর্ণরূপে বর্ণনা করা যায় তাদেরকে এগুলো সহজেই পরীক্ষা পৃথিবীর চৌম্বক উপাদান বা ভূ-চুম্বকের মৌলিক উপাদান বলে।

(ক) বিচ্যুতি,  θ (Declination)

     উল্লম্ব অক্ষের চারদিকে মুক্তভাবে অনুভূমিক তলে ঘূর্ণনক্ষম কোনো চুম্বক শলাকা পৃথিবীর সব স্থানে সম্পূর্ণ ভৌগোলিক উত্তর-দক্ষিণ বরাবর থাকে না-কোনো স্থানে চুম্বক শলাকা ভৌগোলিক উত্তর-দক্ষিণ থেকে যে কোণে বিচ্যুত হয় তাই ঐ স্থানের বিচ্যুতি ।

কোনো স্থানে মুক্তভাবে স্থাপিত চুম্বক শলাকা ভৌগোলিক উত্তর-দক্ষিণ থেকে যে কোণে বিচ্যুত হয় অর্থাৎ ভৌগোলিক উত্তর-দক্ষিণ মধ্যতল ও চৌম্বক মধ্যভলের অন্তর্ভুক্ত কোণকে ঐ স্থানের বিচ্যুতি বলে । 

   কোনো স্থানের বিচ্যুতিকে সাধারণত  θ দ্বারা প্রকাশ করা হয় (চিত্র ৪.২১)। ঐ স্থানে যদি চৌম্বক মধ্যতল ভৌগোলিক মধ্যতলের পূর্ব পাশে থাকে তবে বিচ্যুতিকে  θ° পূর্ব বা  θ°E এবং যদি পশ্চিম পাশে থাকে তবে  θ° পশ্চিম বা  θ°W বলা হয় ।

   অর্থাৎ মুক্তভাবে স্থাপিত চুম্বক শলাকার উত্তর মেরু যদি ভৌগোলিক মধ্যতলের পূর্ব পাশে থাকে তবে ঐ স্থানের বিচ্যুতিকে  θ° পূর্ব আর পশ্চিম পাশে থাকলে θ° পশ্চিম বলা হয়।

  ঢাকার বিচ্যুতি 12পূর্ব বলতে বোঝায় ঢাকায় মুক্তভাবে স্থাপিত চুম্বক শলাকা ভৌগোলিক উত্তর দক্ষিণের সাথে 12কোণ করে অবস্থান করে এবং চুম্বক শলাকার উত্তর মেরু ভৌগোলিক পূর্ব পাশে অবস্থান করে ।

(খ) বিনতি,  (Dip)

   কোনো চুম্বক শলাকাকে এর ভারকেন্দ্রের মধ্য দিয়ে অনুভূমিক অক্ষের চারদিকে উল্লম্বতলে ঘুরতে দিলে এটি ভূ- পৃষ্ঠের সব স্থানে ভূমির সমান্তরালে অবস্থান করে না বরং ভূ-চুম্বকের সৃষ্ট চৌম্বকক্ষেত্রের অভিমুখ বরাবর অবস্থান করে । চৌম্বক মধ্যতলে স্থাপিত চুম্বক শলাকা অনুভূমিক তল থেকে যে কোণে নত বা কাত হয়ে থাকে তাকে ঐ স্থানের বিনতি বলে।

চিত্র :৪.২১

   কোনো স্থানে ভূ-চৌম্বকক্ষেত্র অনুভূমিকের সাথে যে কোণ উৎপন্ন করে অর্থাৎ চৌম্বক মধ্যতলে মুক্তভাৰে স্থাপিত চুম্বক শলাকা অনুভূমিক তল থেকে যে কোণে নত অবস্থায় থাকে তাকে ঐ স্থানের বিনতি বলে।

    অনুভূমিক অক্ষের চারদিকে উল্লম্ব তলে ঘূর্ণনক্ষম কোনো চুম্বক শলাকাকে কোনো স্থানে চৌম্বক মধ্যতলে এনে স্থাপন করলে এর চৌম্বক অক্ষ অনুভূমিক বরাবর না থেকে অনুভূমিকের সাথে কোণ উৎপন্ন করে। এই কোণই বিনতি । বিনতিকে  δদ্বারা প্রকাশ করা হয় (চিত্র ৪.২২)। কোনো স্থানের বিনতিকে  δ° উত্তর বা  ° দক্ষিণ হিসেবে উল্লেখ করা হয়। δ° উত্তর বলতে বোঝায় ঐ স্থান পৃথিবীর উত্তর গোলার্ধে অবস্থিত এবং চৌম্বক মধ্যতলে স্থাপিত চুম্বক শলাকার উত্তর মেরু δ° কোণে অনুভূমিক থেকে নত থাকে। অপরদিকে δ° দক্ষিণ বলতে বোঝায় ঐ স্থান পৃথিবীর দক্ষিণ গোলার্ধে অবস্থিত এবং চৌম্বক মধ্যতলে স্থাপিত চুম্বক শলাকার দক্ষিণ মেরু δ° কোণে নত থাকে ।

   ঢাকার বিনতি 31°N বলতে বোঝায় ঢাকায় ভূ-চুম্বকের চৌম্বকক্ষেত্র অনুভূমিক তলের সাথে 31° কোণ উৎপন্ন করে অর্থাৎ মুক্তভাবে চৌম্বক মধ্যতলে স্থাপিত চুম্বক শলাকার উত্তর মেরু 31° কোণে অনুভূমিক তল থেকে নত থাকে।

     (গ) ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ BH বা H Horizontal Component of Earth's Magnetic Field

     পৃথিবীর সব স্থানে ভূ-চুম্বকের চৌম্বকক্ষেত্র অনুভূমিকে বরাবর ক্রিয়া করে না। অনেক স্থানে অনুভূমিকের সাথে কোণ করে ক্রিয়া করে। এই লব্ধি চৌম্বকক্ষেত্র যদি চৌম্বক মধ্যতল বরাবর অনুভূমিক ও উল্লম্ব এই দুটি উপাংশে ভাগ করা যায় তবে অনুভূমিক বরাবর যে উপাংশ পাওয়া যায় তাই চুম্বকের চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ।

চিত্র :৪.২২

      সংজ্ঞা : কোনো স্থানে অনুভূমিক বরাবর ভূ-চৌম্বকক্ষেত্রের যে উপাংশ থাকে তাকে ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ বলে। ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশকে BH বা শুধু H দিয়ে প্রকাশ করা হয়।

     

       ধরা যাক, কোনো স্থানের ভূ-চুম্বকের চৌম্বকক্ষেত্র B । এই ক্ষেত্র CE বরাবর ক্রিয়া-করে [চিত্র 4.22]। ঐ স্থানে চৌম্বক মধ্যতল বরাবর অনুভূমিক তল CD-এর সাথে মোট চৌম্বকক্ষেত্র  B । যদি δ কোণ

উৎপন্ন করে অর্থাৎ ঐ স্থানের বিনতি  δ হলে, ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ H হবে,

H = B cos δ .,..(4.24)

এবং ভূ-চৌম্বকক্ষেত্রের উল্লম্ব উপাংশ V হবে

V = B sin δ  ... (4.25)

     ঢাকায় ভূ-চৌম্বকক্ষেত্রের অনুভূমিক উপাংশ 34 x 10-6T বলতে বোঝায় ঢাকায় যে ভূ-চৌম্বকক্ষেত্র ক্রিয়া করে চৌম্বক মধ্যতলে অনুভূমিক বরাবর তার উপাংশের মান 34 x 10-6T |

অনুভূমিক উপাংশ এবং উল্লম্ব উপাংশের মধ্যকার সম্পর্ক

সমীকরণ (4.24) ও (4.25) থেকে,

tan δ=VH.. (4.26)

সমীকরণ (4.26 ) থেকে,

উল্লম্ব উপাংশ, V = H tan δ... (4.27)

এবং অনুভূমিক উপাংশ, H= V cot δ.. (4.28)

আবার, সমীকরণ (4.24) ও (4.25) থেকে,

ভূ-চুম্বকের মোট চৌম্বকক্ষেত্র, B=H2+V2.. (4.29)

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

চৌম্বক ডোমেইন

234
234

    ফেরোচৌম্বক পদার্থে চৌম্বক পরমাণুগুলোর মধ্যে একটি প্রবল চৌম্বকক্ষেত্র কাজ করে। একে বলা হয় অভ্যন্তরীণ আণবিক চৌম্বকক্ষেত্র। এর প্রভাবে পরমাণুগুলো এই চৌম্বকক্ষেত্র ছাড়াই স্বতঃস্ফূর্তভাবে বিন্যস্ত হয়ে শক্তিশালী চুম্বকে পরিণত হয়। কিন্তু ফেরোচুম্বকের একটি সম্পূর্ণ দণ্ড বা খণ্ডের দেহ জুড়ে চৌম্বক পরমাণুগুলো অবিচ্ছিন্নভাবে বিন্যস্ত হয় না কারণ সে ক্ষেত্রে প্রচুর চৌম্বক শক্তি এর মধ্যে জমা হবে। বাহ্যিক চৌম্বকক্ষেত্র প্রয়োগ না করলে ক্ষুদ্র ক্ষুদ্র চুম্বকত এলাকা বা ডোমেইনে (domain) বিভক্ত হয়ে পড়ে। প্রত্যেকটি ডোমেইন এক একটি স্বতন্ত্র চুম্বকের ন্যায় আচরণ করে। অসংখ্য চৌম্বক ডোমেইন নিয়ে গঠিত এ সকল ফেরোচৌম্বক পদার্থ সাধারণভাবে অচুম্বকিত মনে হয়, কারণ এই ডোমেইনগুলো বিভিন্ন দিক মুখ করে থাকে। লক্ষণীয় যে, চুম্বকত্ব একটি ভেক্টর রাশি। ফলে এলোমেলোভাবে থাকলে এদের লব্ধি শূন্য হতে পারে। ফেরোচৌম্বক পদার্থ যখন চুম্বকিত নয় তখনও আসলে এর ডোমেইনগুলো স্বতঃস্ফূর্তভাবে চুম্বকিত থাকে ।

     ফেরোচুম্বক পদার্থে 10-12m3 থেকে 10-8m3 আয়তনের মধ্যে 1016 থেকে 1019 সংখ্যক পরমাণু সংবলিত অসংখ্য চৌম্বক এলাকা থাকে যার মধ্যে চৌম্বক দ্বিপোলগুলো একই দিকে সজ্জিত থাকে ; ফলে এরা স্বতন্ত্র চুম্বকের ন্যায় আচরণ করে। এরূপ চুম্বক এলাকাকে চৌম্বক ডোমেইন বলে।

    একটি অচুম্বকায়িত ফেরোচৌম্বক ধাতুখণ্ডে যেমন এক খণ্ড লোহার ভেতরে এসব চৌম্বক ডোমেইন সাধারণভাবে অনিয়মিত বা ইতস্তত বিক্ষিপ্তভাবে ছড়িয়ে থাকে (চিত্র ৪.২৪ ক)। ফলে এই লৌহ খণ্ডের সামগ্রিক চুম্বকত্ব শূন্য অর্থাৎ 

চিত্র :৪.২৪

সাধারণ লোহা চুম্বক হিসেবে আচরণ করে না। কিন্তু এই লৌহ খণ্ডটিকে যদি কোনো বহিঃচৌম্বক ক্ষেত্রে স্থাপন করা হয় তাহলে ডোমেইনগুলো চৌম্বকক্ষেত্রের ক্ষেত্র রেখার সাথে সমান্তরালে নিজেদেরকে স্থায়ীভাবে বিন্যস্ত করে (চিত্র ৪.২৪খ)। ফলে একটি সামগ্রিক চুম্বকায়নের আবির্ভাব ঘটে এবং লৌহখণ্ডটি স্থায়ীভাবে চুম্বকত্ব লাভ করে। প্রযুক্ত চৌম্বকক্ষেত্রটি সরিয়ে নিলেও এর চুম্বকত্ব নষ্ট হয় না।

     কাঁচা লোহার ডোমেইনগুলোকে বহিঃচৌম্বক ক্ষেত্রের প্রভাবে সহজে বিন্যস্ত করে চুম্বকে পরিণত করা যায় কিন্তু চৌম্বকক্ষেত্রের অপসারণে এরা আবার বিক্ষিপ্ত অবস্থায় ফিরে যায় ফলে এদের চুম্বকত্ব নষ্ট হয়ে যায়। এজন্যে কাঁচা লোহাকে কলিংবেলের মতো যেখানে অস্থায়ী চুম্বকের প্রয়োজন হয় সেখানে ব্যবহার করা হয়। ইস্পাতের ক্ষেত্রে ডোমেইনগুলো সহজে বিন্যস্ত হতে চায় না। এজন্য বেশ শক্তিশালী চৌম্বকক্ষেত্রের প্রয়োজন হয় এবং একবার চুম্বকে পরিণত হলে সহজে চুম্বকত্ব হারায় না। এজন্যে ভালো স্থায়ী চুম্বক তৈরি করতে ইস্পাতের প্রয়োজন হয়।

কার্যক্রম : চৌম্বক ডোমেনের চিত্র ৪.২১ এর (ক) ও (খ) এর মধ্যে পার্থক্য ব্যাখ্যা কর।

 

Content added || updated By

তড়িৎ চুম্বক ও স্থায়ী চুম্বক

120
120

     তড়িৎ চুম্বক ও স্থায়ী চুম্বক

তড়িৎ প্রবাহিত করে যে চুম্বক তৈরি করা হয় তাকে তড়িৎ চুম্বক বলে। তড়িৎ চুম্বক অস্থায়ী এবং স্থায়ী দু রকমেরই হতে পারে।

করে দেখো :

    কার্ডবোর্ড রোল করে একটা সিলিন্ডার তৈরি কর (চিত্র ৪.২৬)। সিলিন্ডারের মধ্যে একটা কাঁচা লোহার দণ্ড রাখ এবার সিলিন্ডারের ওপর অন্তরিত তামার তার জড়াও। তারের দুই প্রান্ত একটি চাবির মধ্য দিয়ে 6V থেকে 12 V  এর শুষ্ক ব্যাটারির সাথে সংযোগ দাও। একটি লোহার দণ্ড বা দণ্ড চুম্বকের সাহায্যে কাঁচা লোহার দণ্ডটির চুম্বকত্ব পরীক্ষা কর। ব্যাটারি সংযোগ বিচ্ছিন্ন করে পুনরায় কাঁচা লোহার দণ্ডের চুম্বকত্ব পরীক্ষা কর।

চিত্র :৪.২৬

    এবার কাঁচা লোহার দণ্ডের পরিবর্তে সিলিন্ডারের মধ্যে একটি ইস্পাতের দণ্ড নাও এবং ব্যাটারি সংযোগ দিয়ে তড়িৎ প্রবাহ চালনা কর এবং লোহার দণ্ড বা দত্ত চুম্বকের সাহায্যে চুম্বকত্ব পরীক্ষা কর।

     তড়িৎ প্রবাহ চালনা করার সাথে সাথে কাঁচা লোহার দণ্ডটি চুম্বকে পরিণত হবে। অন্য একটি লোহার দণ্ড বা দণ্ড চুম্বককে কাঁচা লোহার দণ্ডের নিকটে এনে আমরা এর চুম্বকত্ব পরীক্ষা করতে পারি। যতক্ষণ তড়িৎ প্রবাহ চলবে ততক্ষণই কাঁচা লোহার দণ্ডটি চুম্বকিত থাকবে। তড়িৎ প্রবাহ বন্ধ করার সাথে সাথে এর চুম্বকত্ব তিরোহিত করে। এটি একটি অস্থায়ী তড়িৎ চুম্বক।

কাঁচা লোহার পরিবর্তে যখন ইস্পাতের দণ্ড নেওয়ার হয় তখন দেখা যাবে, তড়িৎ প্রবাহের সাথে সাথে এটি চুম্বকে পরিণত হচ্ছে না-বেশ খানিকটা সময় নিচ্ছে। তবে ইস্পাতের দণ্ড একবার চুম্বকিত হওয়ার পর এর চুম্বকত্ব সহজে নষ্ট হবে না। এটি একটি স্থায়ী তড়িৎ চুম্বক ।

Content added By

অস্থায়ী চুম্বক ও স্থায়ী চুম্বকের ব্যবহার

257
257

 অস্থায়ী চুম্বক :

   যে সকল তড়িত্যন্ত্রের ক্ষণস্থায়ী চুম্বকের প্রয়োজন হয় অর্থাৎ ব্যবহারকালে চুম্বকত্বের বারবার পরিবর্তনের দরকার হয়, সেই সকল যন্ত্রে অস্থায়ী চুম্বক ব্যবহৃত হয়। যেমন বৈদ্যুতিক কলিংবেল তৈরি করতে অস্থায়ী চুম্বকের প্রয়োজন হয়।

স্থায়ী চুম্বক : 

   যে সকল যন্ত্রে শক্তিশালী চুম্বকের প্রয়োজন হয়, ব্যবহারকালে যাতে চুম্বকত্বের পরিবর্তন না ঘটে, সেই সকল যন্ত্রে স্থায়ী চুম্বক ব্যবহার করা হয়। যেমন, জেনারেটর, বৈদ্যুতিক মোটর ইত্যাদি তৈরি করতে ক্ষেত্র চুম্বক হিসেবে স্থায়ী চুম্বক ব্যবহার করা হয়।

কার্যক্রম : স্থায়ী ও অস্থায়ী চুম্বকের ব্যবহারের ওপর একটি প্রতিবেদন তৈরি কর।
Content added By

চৌম্বক ক্ষেত্র : গতিশীল আধানের উপর বল

385
385

    আমরা জানি, একটি আহিত স্থির কণা তার চারপাশে তড়িৎক্ষেত্র সৃষ্টি করে ।

   স্থির তড়িতের আলোচনায় আমরা তড়িৎক্ষেত্র E এর ব্যাপক ব্যবহার করেছি। আমরা দেখেছি একটি পরীক্ষণীয় আধান q কোনো স্থানে স্থাপন করলে তড়িৎক্ষেত্র   E তার ওপর F = q E  তড়িৎ বল (কুলম্ব বল) প্রয়োগ করে। তেমনিভাবে চৌম্বকক্ষেত্র B এর অবতারণা করে অমা চৌম্বক ঘটনাবলি আলোচনা করতে পারি। একটি গতিশীল আধান তার চারপাশে চৌম্বকক্ষেত্র সৃষ্টি করে। একটি গতিশীল আধান অন্য একটি গতিশীল আধানের ওপর তড়িৎ বল (কুলম্ব বল) ছাড়াও অন্য বল প্রয়োগ করে। আধানসমূহের ওপর এই বেগনির্ভর বলই হচ্ছে চৌম্বক বল। 

    ধরা যাক, কোনো স্থানে একটি ধ্রুব চৌম্বকক্ষেত্র বিদ্যমান। কীভাবে এ চৌম্বকক্ষেত্র সৃষ্টি হলো তা এখন আমাদের বিবেচ্য নয়। সে বিষয়ে আমরা পরে আলোচনা করব। এ চৌম্বকক্ষেত্রের এবং সেই সাথে চৌম্বক বলের প্রকৃতি অনুসন্ধানের জন্য আমরা পরীক্ষণীয় বন্ধু হিসেবে একটি গতিশীল আধান বিবেচনা করছি। একটি চৌম্বকক্ষেত্রে কোনো গতিশীল আধান যে বল লাভ করে তা নিম্নোক্ত বিষয়গুলোর উপর নির্ভর করে :

১। আধানের পরিমাণ;

২। আধানের বেগ;

৩। চৌম্বকক্ষেত্রের মান;

৪। আধানের বেগের দিক এবং চৌম্বকক্ষেত্রের দিকের অন্তর্ভুক্ত কোণ। পরীক্ষা থেকে পাওয়া যায়, চৌম্বকক্ষেত্রে গতিশীল আধানের উপর বল (F) সর্বদা আধানের বেগের লম্ব বরাবর ক্রিয়া করে। এই বলের মান-

(ক) আধানের মানের (g) সমানুপাতিক;

(খ) আধানের বেগের (v) সমানুপাতিক ;

(গ) চৌম্বকক্ষেত্রের মানের (B) সমানুপাতিক;

(ঘ) আধানের বেগের দিক চৌম্বকক্ষেত্রের দিকের সাথে যে কোণ (θ) উৎপন্ন করে তার sin এর সমানুপাতিক ।

সুতরাং Fqv B sinθ

   কোনো স্থানে চৌম্বকক্ষেত্রের মান নির্দিষ্ট হলে এই বলের মান নির্ভর করবে কেবল আধানের মান, আধানের বেগ এবং আধানের বেগের দিক চৌম্বকক্ষেত্রের দিকের সাথে যে কোণ উৎপন্ন করে তার ওপর। এখন একটি একক আধানকে কোনো চৌম্বকক্ষেত্রের দিকের সাথে লম্বভাবে একক বেগে গতিশীল করলে ঐ আধানটি যে বল লাভ করে তাই হবে ঐ চৌম্বকক্ষেত্রের মান ।

   একটি গতিশীল আধান বা স্থায়ী চুম্বক তার চারপাশে চৌম্বকক্ষেত্র সৃষ্টি করে। কোনো চৌম্বকক্ষেত্রের দিকের সাথে সমকোণে একক বেগে চলমান একটি একক আধানের ওপর ক্রিয়াশীল বলের মানকে ঐ চৌম্বকক্ষেত্রের মান বলে।

কোনো চৌম্বকক্ষেত্রের দিকের সাথে সমকোণে q আধান v বেগে গতিশীল [চিত্র ৪.২ক] হলে ঐ আধানটি যদি F বল লাভ করে তাহলে একক আধান একক বেগে গতিশীল হলে - Fqv বল লাভ করবে। সুতরাং চৌম্বকক্ষেত্রের মান হবে B = Fqv 

    কিন্তু যদি আধানটি চৌম্বকক্ষেত্রের সাথে সমকোণে গতিশীল না হয়ে θ কোণে গতিশীল হয় [চিত্র ৪.২খ], তাহলে চৌম্বকক্ষেত্রের দিকের লম্ব বরাবর অর্থাৎ ক্ষেত্রের দিকের সাথে সমকোণে আধানটির বেগের উপাংশ হবে v sin θ এবং

চিত্র :৪.২

  চৌম্বকক্ষেত্রের মান হবে,

 B=Fqv sinθ  (4.2)

   বা, F = qvB sin θ  (4.3)

পরীক্ষার মাধ্যমে প্রাপ্ত চৌম্বক বল F এর মান ও দিক আধানের বেগ vএবং চৌম্বকক্ষেত্র B এর সাথে নিম্নোক্ত ভেক্টর সমীকরণ দ্বারা সঠিকভাবে সম্পর্কিত।

 F = qv×B.. (4.4)

    বলের দিক : 

   একটি ডানহাতি ক্রুকে বেগ এবং চৌম্বকক্ষেত্র  B  এর সমতলে লম্বভাবে স্থাপন করে vথেকে  B এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হবে সে দিক গতিশীল ধনাত্মক আধানের ওপর ক্রিয়াশীল চৌম্বক বলের (ট) দিক নির্দেশ করে [চিত্র ৪.৩]। চৌম্বকক্ষেত্রে একটি ক্ষুদ্র চুম্বক শলাকা স্থাপন করলে এটি যে দিক বরাবর অবস্থান করে চৌম্বকক্ষেত্রের দিক হয় সেদিকে।

আমরা যেমন তড়িৎক্ষেত্রকে তড়িৎ ক্ষেত্ররেখা বা বলরেখা দ্বারা নির্দেশ করতে পারি যার দিক এবং ঘনত্ব তড়িৎক্ষেত্রের দিক ও মান নির্দেশ করে, তেমনি আমরা চৌম্বকক্ষেত্র  B কে চৌম্বক ক্ষেত্র রেখা দ্বারা নির্দেশ করতে পারি। চৌম্বকক্ষেত্র রেখা হচ্ছে সেই সকল রেখা, যে ৰৱাৰর কোনো আহিত কণা যে কোনো বেগেই চলুক না কেন সেটি কোনো চৌখক বল অনুভব করে না।

চিত্র :৪.৩

     কোনো স্থানে যেখানে চৌম্বক ক্ষেত্ররেখাগুলো ঘন সন্নিবিষ্ট সেখানে চৌম্বকক্ষেত্র প্রবল আর যেখানে রেখাগুলো দূরে দূরে অবস্থিত সেখানে চৌম্বকক্ষেত্র দুর্বল। একটি সুষম বা ধ্রুব চৌম্বকক্ষেত্রকে সুষম ব্যবধানের অনেকগুলো সমান্তরাল সরলরেখা দ্বারা প্রকাশ করা হয়।

   অনেক সময় আমাদেরকে চৌম্বকক্ষেত্র রেখা যা এই কাগজের সমতলের লম্ব বরাবর ভেতর দিকে যাচ্ছে বা কাগজের সমতলের লম্ব বরাবর বেরিয়ে আসছে- চিত্রিত করতে হয়। চৌম্বকক্ষেত্র রেখার দিক কাগজের সাথে লম্ব বরাবর বাইরের দিক বোঝাতে ( . ) সংকেতটি এবং ভেতরের দিক বোঝাতে ( x ) সংকেতটি ব্যবহার করা হয় [চিত্র ৪.৪]। এই সংকেতগুলো আমাদেরকে যথাক্রমে কাগজ থেকে বেরিয়ে আসতে উদ্যত একটি তীরের অগ্রভাগকে এবং কাগজের মধ্যে ঢুকে যাওয়া একটি তীরের পেছনের পালকগুচ্ছকে মনে করিয়ে দেয়।

চিত্র :৪.৪

   চৌম্বক ক্ষেত্রের একক : 

    (4.2) সমীকরণের ডানপাশের রাশিগুলোর একক বসালে চৌম্বকক্ষেত্র B এর একক  পাওয়া যায়। এ একক হলো Ncms-1। ক্রোয়েশিয়ার বিজ্ঞানী নিকোলা টেসলা এর নামানুসারে একে টেসলা (T) বলে।

 1T=1NC ms1=1NC s1m=1NAm=1 NA1m1 

     তড়িৎপ্রবাহের ফলে সৃষ্ট চৌম্বকক্ষেত্রের মান ও দিক

      আমরা আগেই উল্লেখ করেছি যে, কোনো পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহিত হলে এর চারপাশে চৌম্বক ক্ষেত্রের সৃষ্টি হয়। কোনো বিন্দুতে এই চৌম্বকক্ষেত্রের মান কত হবে তা বিয়োঁ-স্যাভার সূত্রের সাহায্যে পাওয়া যায় । চৌম্বকক্ষেত্রের অভিমুখ নিম্নের দুটি সূত্রের যে কোনোটি ব্যবহার করে পাওয়া যায়।

১. ম্যাক্সওয়েলের কর্ক- সূত্র : 

     একটি তড়িৎবাহী তার বরাবর প্রবাহের অভিমুখে একটি ডানপাকের কর্ক স্কুকে ঘুরালে হাতের বৃদ্ধাঙ্গুলী যেদিকে ঘুরে চুম্বক শলাকার উত্তর মেরু সেদিকে বিক্ষিপ্ত হবে অর্থাৎ ঐ দিকই হবে চৌম্বক ক্ষেত্রের অভিমুখ। [চিত্র ৪.৫]।

 

চিত্র :৪.৫
চিত্র :৪.৬

২. ফ্লেমিং-এর ডান হস্ত সূত্র : 

     একটি তড়িৎবাহী তারকে প্রবাহের অভিমুখে বৃদ্ধাঙ্গুলী প্রসারিত করে ডান হাত দিয়ে মুষ্টিবদ্ধ করে ধরলে অন্য আঙ্গুলগুলোর মাথা চৌম্বকক্ষেত্রের অভিমুখ নির্দেশ করে [চিত্র ৪.৬]।

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

বিয়োঁ-স্যাভার সূত্র

85
85

     কোনো পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহ চললে এর আশেপাশে কোনো বিন্দুর চৌম্বকক্ষেত্র B এর মান বের করার জন্য লাপ্লাস একটি সূত্র প্রদান করেন যা লাপ্লাসের সূত্র নামে পরিচিত। জীন ব্যাপ্টিস্ট বিয়োঁ এবং ফেলিক্স স্যাভা সর্বপ্রথম পরীক্ষার মাধ্যমে লাপ্লাসের সূত্রের সত্যতা প্রমাণ করেন বলে এই সূত্রটিকে বিয়োঁ-স্যাভার সূত্রও বলা হয় । 

     সূত্র : নির্দিষ্ট মাধ্যমে কোনো পরিবাহীর ক্ষুদ্র দৈর্ঘ্যের ভেতর দিয়ে তড়িৎ প্রবাহ চলার ফলে এর আশেপাশে কোনো বিন্দুতে সৃষ্ট চৌম্বকক্ষেত্রের মান পরিবাহীর ক্ষুদ্র দৈর্ঘ্যের সমানুপাতিক, তড়িৎপ্রবাহের সমানুপাতিক,পরিবাহীর ঐ অংশের মধ্যবিন্দু থেকে ঐ বিন্দুর দূরত্বের বর্গের ব্যস্তানুপাতিক, পরিবাহী এবং পরিবাহীর ঐ অংশের মধ্যবিন্দু ও ঐ বিবেচিত বিন্দুর সংযোজক সরলরেখার অন্তর্ভুক্ত কোণের সাইনের সমানুপাতিক ।

     কোনো পরিবাহীর ক্ষুদ্র দৈর্ঘ্য dl এর ভেতর দিয়ে যদি I তড়িৎ প্রবাহ চলে তাহলে পরিবাহীর ঐ অংশের মধ্যবিন্দু থেকে θ কোণে r দূরত্বে অবস্থিত কোনো বিন্দু P তে [চিত্র ৪.৭] চৌম্বক ক্ষেত্র dB এর মান হবে

dBI dl sinθr2

dB=KI dl sinθr2… (4.5)

    এখানে K একটি সমানুপাতিক ধ্রুবক। এর মান রাশিগুলোর একক ও মাধ্যমের চৌম্বক ধর্মের উপর নির্ভর করে।

শূন্যস্থানে বিঁয়ো-স্যাভাঁর সূত্র :

     এস. আই এককে চৌম্বকক্ষেত্রকে টেসলা (T), তড়িৎপ্রবাহকে অ্যাম্পিয়ার (A) এবং দৈর্ঘ্য ও দূরত্বকে মিটার (m)-এ পরিমাপ করলে শূন্যস্থানে বিয়ো-স্যার্ভার সূত্রের সমানুপাতিক ধ্রুবক K-এর মান পাওয়া যায় 107 TmA এস. আই পদ্ধতিতে এই সমানুপাতিক ধ্রুবককে লেখা হয়,

K=μ04π

    এখানে μ0 হচ্ছে একটি ধ্রুব সংখ্যা যাকে শূন্যস্থানের চৌম্বক প্রবেশ্যতা (permeability of free space or vacuum) বলে। এর মান হচ্ছে, 

 μ0=4π × 10-7 TmA-1

 সুতরাং শূন্যস্থানে বিঁয়ো-স্যাভাঁর সূত্রের রূপ হলো,

 dB=μ04π Idl sinθr2.. (4.6)

  যে কোনো মাধ্যমে বিয়ো-স্যাভার সূত্র :

তড়িৎ প্রবাহের ফলে সৃষ্ট চৌম্বকক্ষেত্রের মান মাধ্যমের ওপর তথা মাধ্যমের চৌম্বক প্রবেশ্যতার ওপর নির্ভর করে। । চৌম্বক প্রবেশ্যতাবিশিষ্ট মাধ্যমে বিয়োঁ স্যার্ভার সূত্রের রূপ হলো,

dB=μ4π Idl sinθr2.. (4.7)

     সম্পূর্ণ তড়িৎবাহী পরিবাহীর জন্য P বিন্দুতে চৌম্বক ক্ষেত্র B এর মান হিসাব করতে হলে (4.6) বা (4.7) সমীকরণকে যোগজীকরণ করতে হবে। সুতরাং শূন্য স্থানের জন্য বিয়োঁ-স্যাঁভার সূত্র

  B=μ04πIdl sinθr2=μ04πIdl sinθr2

বিয়োঁ-স্যাভার সূত্রের প্রয়োগ (Applications of Biot-Savart's Law) 

   (ক) অসীম দৈর্ঘ্যের তড়িৎবাহী সরল ভারের দরুন চৌম্বকক্ষেত্র

 বায়ু বা শূন্যস্থানে একটি দীর্ঘ ও সোজা পরিবাহী তার XY বিবেচনা করা যাক [চিত্র ৪.৮]। এর ভেতর দিয়ে X থেকে Y এর দিকে I প্রবাহ চলছে। এই তড়িৎ প্রবাহের ফলে P বিন্দুতে সৃষ্ট চৌম্বকক্ষেত্র B হিসাব করতে হবে।

চিত্র :৪.৮

 ধরি,

QP = a = পরিবাহীর মধ্যবিন্দু থেকে P বিন্দুর দূরত্ব। 

dl = পরিবাহীর মধ্যবিন্দু থেকে l দূরত্বে অবস্থিত পরিবাহীর ক্ষুদ্রাতিক্ষুদ্র দৈর্ঘ্য ।

r = dl এর মধ্যবিন্দু থেকে P বিন্দুর দূরত্ব।

I = পরিবাহীতে তড়িৎ প্রবাহ।

θ = তড়িৎপ্রবাহ I বা dl এবং OP এর মধ্যবর্তী কোণ ।

     এখন বিঁয়ো-স্যাঁভার সূত্র থেকে আমরা ক্ষুদ্র প্রবাহ উপাদানের জন্য P বিন্দুতে চৌম্বক ক্ষেত্রের মান পাই,

 dB=μ04π Idl sinθr2

   এই সমীকরণকে যোগজীকরণ করে অসীম দৈর্ঘ্যের সরল পরিবাহীর জন্য P বিন্দুতে মোট চৌম্বকক্ষেত্রের মান পাওয়া যাবে। যেহেতু পরিবাহীটি অসীম দৈর্ঘ্যের, সুতরাং যোগজীকরণের সীমা হবে l = -  থেকে l =   পর্যন্ত ।

:- B=dB=l=l=μ04πIdl sinθr2

B=μ0I4πl=l=dl sinθr2

     এই সমীকরণের r, θ এবং dl পরস্পর সম্পর্কযুক্ত হওয়ায় এই যোগজীকরণ সম্পন্ন করার জন্য এগুলোকে একটি মাত্র চলকের মাধ্যমে প্রকাশ করতে হবে। এখন ৪.৮ (ক) চিত্র থেকে-

:- - l =a cot θ 

   (খ) তড়িৎবাহী বৃত্তাকার কুণ্ডলীর কেন্দ্রে চৌম্বকক্ষেত্র

একটি বৃত্তাকার কুগুলী বিবেচনা করা যাক, যার ব্যাসার্ধ । এই কুণ্ডলীর মধ্য দিয়ে I তড়িৎ প্রবাহ চলছে। কুণ্ডলীর কেন্দ্র P বিন্দুতে চৌম্বকক্ষেত্র B এর মান নির্ণয় করতে হবে।

   ধরা যাক, YX হচ্ছে কুণ্ডলীর ক্ষুদ্রাতিক্ষুদ্র দৈর্ঘ্য dl [চিত্র ৪.৯]।

      এখন বিঁয়ো-স্যাভাঁর সূত্র থেকে আমরা কুগুলীর ক্ষুদ্র দৈর্ঘ্য dl এর জন্য কুণ্ডলীর কেন্দ্র P তে চৌম্বকক্ষেত্রের মান পাই,

চিত্র :৪.৯

dB=μ04π Idl sinθr2..(4.11)  

   এখানে θ হচ্ছে  dl এবং  rএর অন্তর্ভুক্ত কোণ। এখন (4.11) সমীকরণকে যোগজীকরণ করে সমগ্র কুণ্ডলীর জন্য P তে চৌম্বকক্ষেত্রের মান পাওয়া যায়। যেহেতু বৃত্তাকার পরিবাহীর দৈর্ঘ্য হচ্ছে কুণ্ডলীর পরিধির দৈর্ঘ্য অর্থাৎ 2πr, সুতরাং যোগজীকরণের সীমা হবে = 0 থেকে l = 2πr পর্যন্ত।   

 B=dB=l=ol=2πrμ04πIdl sinθr2

Content added || updated By

চৌম্বকক্ষেত্রে আধানের গতি

68
68

    আগেই আালোচনা করা হয়েছে যে, কোনো চৌম্বকক্ষেত্রে একটি গতিশীল আধান একটি বল লাভ করে। এই ৰলকে বলা হয় লরেঞ্জ চৌম্বক বল। ধরা যাক, + q আধানবিশিষ্ট কোনো কণা সুষম চৌম্বকক্ষেত্র B তে vঐ বেগে গতিশীল । 

  এখন চৌম্বকক্ষেত্র কর্তৃক এর উপর প্রযুক্ত বল,

Fm=q (v+B)

 মান এই বলের মান হলো,

 Fm=qvB sinϑθ

   এখানে θ হচ্ছে বেগ vএবং ক্ষেত্র   Bএর মধ্যবর্তী ক্ষুদ্রতর কোণ।

বিশেষ ক্ষেত্র :

  ১. আধানটি যদি স্থির হয় অর্থাৎ যদি v = 0 হয় তাহলে Fm = 0।

   সুতরাং কোনো স্থির আধান কোনো চৌম্বকক্ষেত্রে কোনো চৌম্বক বল অনুভব করে না।

  ২. যদি θ  = 0° বা 180° হয়, অর্থাৎ আধানটি যদি চৌম্বকক্ষেত্রের সমান্তরালে গতিশীল হয়, তাহলে Fm = 0 সুতরাং চৌম্বকক্ষেত্রের দিকের সমান্তরালে গতিশীল কোনো আধান চৌম্বক বল অনুভব করে না। 

  ৩. যদি θ = 90° হয়, অর্থাৎ আধানটি যদি চৌম্বকক্ষেত্রের সমকোণে গতিশীল হয়, তাহলে Fm = qvB

    একটি গতিশীল আধান কোনো চৌম্বকক্ষেত্রে সর্বোচ্চ এই পরিমাণ বল অনুভব করতে পারে। এই ক্ষেত্রে Fm এর অভিমুখ ফ্লেমিঙের বামহস্ত সূত্র থেকে পাওয়া যায় ।

    বাম হাতের তর্জনী, মধ্যমা ও বৃদ্ধাঙ্গুলী পরস্পর সমকোণে প্রসারিত করে তর্জনীকে চৌম্বকক্ষেত্রের (B) অভিমুখে এবং মধ্যমাকে ধনাত্মক আধানের বেগের ( v) দিকে স্থাপন করলে বৃদ্ধাঙ্গুলী বলের (Fm) দিক নির্দেশ করে। আধানটি ঋণাত্মক হলে বলের দিক বিপরীতমুখী হয়ে যাবে । 

  ৪. যখন q আধানটি এমন একটি স্থানে  v বেগে গতিশীল হয় যেখানে একই সময়ে তড়িৎক্ষেত্র  E চৌম্বকক্ষেত্র B' বিদ্যমান, তখন এর উপর ক্রিয়াশীল বল হয়-

 F=qE+q(v×B) 

F=q(E+v+B)

  এই বলকে বলা হয় লরেঞ্জ বল।

     লরেঞ্জ বলের সংজ্ঞা : কোনো স্থানে একই সময়ে একটি তড়িৎক্ষেত্র ও একটি চৌম্বকক্ষেত্র বিদ্যমান থাকলে সেখানে একটি গতিশীল আধান যে লব্ধি বল অনুভব করে তাকে লরেঞ্জ বল বলে।

Content added || updated By

চৌম্বক পদার্থের শ্রেণিবিভাগ

547
547

    লোহা বা ইস্পাতই যে কেবল চুম্বক দ্বারা আকৃষ্ট হয় বা এদেরকেই যে কেবল চুম্বকায়িত করা যায়, তা নয়। সকল পদার্থেরই চৌম্বক ধর্ম আছে এবং সকল পদার্থই চৌম্বকক্ষেত্র দ্বারা কম বেশি প্রভাবিত হয়। চৌম্বক আচরণের ওপর ভিত্তি করে পদার্থসমূহকে ডায়াচৌম্বক, প্যারাচৌম্বক, ফেরোচৌম্বক, এন্টিফেরোচৌম্বক ও ফেরিচৌম্বক পদার্থ হিসেবে শ্রেণিবিভাগ করা হয়।

১. ডায়াচৌম্বক পদার্থ (Diamagnetic Substance): 

     যে সকল পদার্থকে চৌম্বকক্ষেত্রে স্থাপন করা হলে চুম্বকায়নকারী ক্ষেত্রের বিপরীত দিকে সামান্য চুম্বকত্ব লাভ করে তাদেরকে ডায়াচৌম্বক পদার্থ বলে। 

   যখন কোনো ডায়াচৌম্বক পদার্থকে বাহ্যিক চৌম্বকক্ষেত্রের মধ্যে স্থাপন করা হয়, তখন দেখা যায় ডায়াচৌম্বক পদার্থটির অভ্যন্তরে চৌম্বকক্ষেত্র বাহ্যিক চৌম্বকক্ষেত্রের চেয়ে সামান্য কম হয়। কোনো ডায়াচৌম্বক পদার্থকে কোনো অসম চৌম্বকক্ষেত্রে স্থাপন করা হলে, এটি চৌম্বকক্ষেত্রের সবলতর অঞ্চল থেকে দুর্বলতর অঞ্চলের দিকে গতিশীল হতে চায়। প্রযুক্ত চৌম্বকক্ষেত্র খুবই শক্তিশালী না হলে ডায়াচৌম্বক প্রভাব এত অল্প হয় যে তা ধরাই যায় না। ডায়াচৌম্বক পদার্থের আচরণ তাপমাত্রার ওপর নির্ভর করে না। তামা, দস্তা, বিসমাথ, রুপা, সোনা, সীসা, কাচ, মার্বেল, পানি, হিলিয়াম, আর্গন, সোডিয়াম ক্লোরাইড প্রভৃতি ডায়াচৌম্বক পদার্থের উদাহরণ।  

২. প্যারাচৌম্বক পদার্থ (Paramagnetic Substance):

    যে সকল পদার্থকে চৌম্বকক্ষেত্রে স্থাপন করা হলে চুম্বকায়নকারী ক্ষেত্রের দিকে সামান্য চুম্বকত্ব লাভ করে তাদেরকে প্যারাচৌম্বক পদার্থ বলে ।

     যখন কোনো প্যারাচৌম্বক পদার্থকে বাহ্যিক চৌম্বকক্ষেত্রের মধ্যে স্থাপন করা হয়, তখন দেখা যায় প্যারাচৌম্বক পদার্থটির অভ্যন্তরে চৌম্বকক্ষেত্র বাহ্যিক চৌম্বকক্ষেত্রের চেয়ে সামান্য বড় হয়। কোনো প্যারাচৌম্বক পদার্থকে অসম চৌম্বকক্ষেত্রে স্থাপন করলে সেটি চৌম্বকক্ষেত্রের দুর্বলতর অঞ্চল থেকে সবলতর অঞ্চলের দিকে গতিশীল হতে চায়— যা ডায়াচৌম্বক পদার্থের উল্টো। প্যারাচৌম্বক পদার্থের আচরণ তাপমাত্রার ওপর নির্ভর করে। এক্ষেত্রেও কেবল শক্তিশালী চৌম্বকক্ষেত্র প্রযুক্ত হলেই প্যারাচৌম্বক প্রভাব দৃশ্যমান হয়। কয়েকটি প্যারাচৌম্বক পদার্থ হচ্ছে অ্যালুমিনিয়াম, সোডিয়াম, এন্টিমনি, প্লাটিনাম, ম্যাঙ্গানিজ, ক্রোমিয়াম, তরল অক্সিজেন প্রভৃতি।

৩. ফেরোচৌম্বক পদার্থ (Ferromagnetic Substance): 

     যে সকল পদার্থকে চৌম্বকক্ষেত্রে স্থাপন করা হলে চুম্বকায়নকারী ক্ষেত্রের দিকে শক্তিশালী চুম্বকত্ব লাভ করে তাদেরকে ফেরোচৌম্বক পদার্থ বলে । 

     যখন কোনো ফেরোচৌম্বক পদার্থকে বাহ্যিক চৌম্বকক্ষেত্রের মধ্যে স্থাপন করা হয়, তখন ফেরোচৌম্বক পদার্থের অভ্যন্তরে চৌম্বকক্ষেত্র বহুগুণ বর্ধিত হয়। কোনো ফেরোচৌম্বক পদার্থকে অসম চৌম্বকক্ষেত্রে স্থাপন করলে সেটি দ্রুত চৌম্বকক্ষেত্রের দুর্বলতর অঞ্চল থেকে সবলতর অঞ্চলের থেকে গতিশীল হয়। অন্য কথায় খুবই দুর্বল চৌম্বকক্ষেত্রেও ফেরোচৌম্বক প্রভাব দেখা যায়। তাপমাত্রার একটি নির্দিষ্ট মান অতিক্রম করলেই ফেরোচৌম্বক পদার্থ চুম্বকত্ব হারায়। এ তাপমাত্রাকে কুরি তাপমাত্রা বলে। ফেরোচৌম্বক পদার্থের উদাহরণ হলো লোহা, নিকেল, কোবাল্ট প্রভৃতি। লোহার কুরি তাপমাত্রা 1043K

৪. এন্টিফেরোচৌম্বক পদার্থ (Antiferromegnetic Substance) : 

   এন্টিফেরোচৌম্বকত্বের উদ্ভব হয় যখন  পার্শ্ববর্তী পরমাণুসমূহের স্পিন ভ্রামকগুলো প্রতি সমান্তরালভাবে সজ্জিত হয় (চিত্র ৪.২৩ক) বা যখন বিনিময় ইন্টিগ্রাল

চিত্র :৪.২৩

ঋণাত্মক হয়। এন্টিফেরো চুম্বকত্ব প্রদর্শন করে এরকম কেলাসে দুই ধরনের সাবল্যাটিস থাকে যার একটি স্বতঃস্ফূর্তভাবে একদিকে চুম্বকিত থাকে অন্যটি স্বতঃস্ফূর্তভাবে বিপরীত দিকে চুম্বকিত থাকে। এ ধরনের চুম্বকত্ব প্রথম পরিলক্ষিত হয়। ম্যাঙ্গানিজ অক্সাইডের (MnO) কেলাসে। বাহ্যিক চুম্বকক্ষেত্রের অনুপস্থিতিতে পার্শ্ববর্তী চৌম্বক ভ্রামকগুলো একে অপরের ক্রিয়া নাকচ করে দেয় ফলে পদার্থটি সামগ্রিকভাবে কোনো চুম্বকত্ব প্রদর্শন করে না। বাহ্যিক চৌম্বকক্ষেত্র প্রয়োগ করা হয় তখন ক্ষেত্রের দিক বরাবর সামান্য চুম্বকত্বের উদ্ভব হয় যা তাপমাত্রা বৃদ্ধির সাথে সাথে বৃদ্ধি প্রাপ্ত হয় । একটা ক্রান্তি তাপমাত্রায় চুম্বকত্ব সর্বাধিক হয় যাকে বলা হয় নীল তাপমাত্রা (Neel temperture)। এই তাপমাত্রার ওপরে চুম্বকত্ব ধারাবাহিকভাবে হ্রাস পেতে থাকে এবং এক সময় প্যারাচৌম্বক পদার্থের ন্যায় আচরণ করতে থাকে।

৫. ফেরিচৌম্বক পদার্থ (Ferrimagnetic Substance) :

    ফেরিচৌম্বক পদার্থ এন্টিফেরোচৌম্বক পদার্থের অনুরূপ শুধুমাত্র পার্থক্য এই যে, প্রতি সমান্তরালভাবে সাজানো এর পার্শ্ববর্তী পরমাণুসমূহের স্পিন ভ্রামকগুলোর মান অসমান (চিত্র ৪.২৩খ) যার ফলে একটা লব্ধি চৌম্বকত্বের উদ্ভব হয়। এই ধরনের চুম্বকত্ব সাধারণত ফেরাইট Fe3O4 (Ferrites)-এর মধ্যে দেখা যায়।

কার্যক্রম : ডায়া, প্যারা ও ফেরোচৌম্বক পদার্থের মধ্যে পার্থক্যের একটি চার্ট তৈরি কর ।

 

Content added By

হিস্টোরিসিস লেখচিত্র

125
125

    ৪.২৫ চিত্রের লেখ-এর সাহায্যে Bo এর মান কীভাবে Bo এর সাপেক্ষে পরিবর্তিত হয় তা ব্যাখ্যা করা হয়েছে। এখানে B হচ্ছে ফেরোচৌম্বক পদার্থের মধ্যস্থ চৌম্বকক্ষেত্র এবং Bo হচ্ছে চুম্বকায়নকারী ক্ষেত্র।

চিত্র :৪.২৫

   পরীক্ষাধীন ফেরোচৌম্বক পদার্থের নমুনাটি সূচনাতে অচুম্বকিত অবস্থায় আছে এবং তা রেখের O বিন্দু দ্বারা নির্দেশ করা হচ্ছে। Bo এর মান বৃদ্ধির সাথে সাথে B এর মান OP বরাবর বৃদ্ধি প্রাপ্ত হয়ে P বিন্দুতে এর সম্পৃক্ত মান (saturation value) Bs-এ পৌঁছে। এখন Bo-এর মান শূন্য করা হলে Bo-এর মান সামান্য হ্রাস পেয়ে Br হয়। এই অবস্থা Q বিন্দু দ্বারা নির্দেশ করা হচ্ছে এবং নমুনাটিতে কিছু চুম্বকত্ব রয়ে গেছে। নমুনাটিতে যে পরিমাণ চৌম্বকক্ষেত্র অবশিষ্ট রয়ে যায় তাকে রিমেনেন্স (remanence) বা চৌম্বক ধারণ ক্ষমতা ( retentivity) Br বলে। B-এর মান শূন্যে নিয়ে আসার জন্য Bo এর পশ্চাদ্বর্তী চৌম্বকক্ষেত্র প্রয়োগের প্রয়োজন হয়।

  Bo এর যে মান B-কে শূন্যে নামিয়ে আনে তাকে অর্থাৎ Bo কে কোয়েরসিড বল বা সহনশীল বল (Coercive force) বলে। Boluo.-কে নমুনার সহনশীলতা (coercivity) বলে। বিপরীত ক্ষেত্রকে যদি আরো বাড়ানো হয় তাহলে নমুনাটির পুনরায় চুম্বকায়ন হয় এবং S বিন্দুতে সম্পৃক্ততা পায়। বিপরীত ক্ষেত্রকে শূন্য করে দিলেও নমুনাতে আবার কিন্তু চুম্বকত্ব অবশেষ রয়ে যাবে, যা T বিন্দু নির্দেশ করছে। Bo সম্মুখবর্তীভাবে বাড়িয়ে সর্বোচ্চ আদি মানে আনলে B, TP বরাবর বেড়ে Bo, মান প্রাপ্ত হবে। যখন B-এর মান কমানো হয় (অর্থাৎ P থেকে Q এবং S থেকে T) তখন B এর যে মান পাওয়া যায় তা Bo-কে বাড়ানোর সময়ে প্রাপ্ত মানের চেয়ে বড় হয়। অর্থাৎ নমুনাটি বিচুম্বকায়িত হতে অনীহা বা শৈথিল্য প্রদর্শন করে। এ ঘটনাকে হিস্টোরিসিস (Hysterosis) বলে। PQRSTP-কে হিস্টোরিসি লুপ (Hysteresis loop) বলে।

   কোনো ফেরোচৌম্বক পদার্থে চৌম্বকক্ষেত্র প্রয়োগ করে চুম্বকিত করার পর চৌম্বকক্ষেত্র অপসারণ করে বিচুম্বকিত করতে গেলে সেটি সহজে বিচুম্বকিত হতে চায় না। চৌম্বকক্ষেত্র প্রয়োগের সময় পদার্থের চুম্বকত্ব যে ভাবে বৃদ্ধি পায়, চৌম্বকক্ষেত্র অপসারণের সময় চুম্বকত্ব সে ভাবে হ্রাস পায় না। চৌম্বক পদার্থের বিচুম্বকিত হতে অনীহা বা শৈথিল্য প্রদর্শন করাকে হিস্টোরিসিস বলে।

   যে সকল ফেরোচৌম্বক পদার্থের জন্য সরু হিস্টোরিসিস লুপ পাওয়া যায় সেগুলোকে কোমল চৌম্বক পদার্থ (Soft magnetic material) বলে। 

     হিস্টোরিসিস লেখচিত্র লক্ষ করলে দেখা যায় যে, কোনো পদার্থকে চুম্বকায়নের জন্য যে শক্তির প্রয়োজন বিচুম্বকায়নের সময় সে শক্তি সম্পূর্ণরূপে ফিরে পাওয়া যায় না। উদাহরণ হিসেবে বলা যায় যে, চুম্বকায়ন ক্ষেত্র B কে সম্পূর্ণরূপে অপসারণ করার পরও পদার্থের মধ্যে কিছু চুম্বকত্ব অবশিষ্ট থেকে যায়, যাকে বিলুপ্ত করার জন্য পশ্চাদ্বর্তী চুম্বকায়ন ক্ষেত্র প্রয়োগ করতে হয়। সুতরাং দেখা যায়, কোনো পদার্থের চুম্বকায়ন ও বিচুম্বকায়নের প্রক্রিয়ায় হিস্টোরিসিসের জন্য কিছু শক্তি অপচয় হয়। এই অপচয়ের পরিমাণ হিস্টোরিসিস লুপ দ্বারা আবদ্ধ তলের ক্ষেত্রফলের সমান ।

    কাঁচা লোহার হিস্টোরিসিসজনিত অপচয় ইস্পাতের চেয়ে কম বলে ট্রান্সফর্মার ডায়নামো ইত্যাদির অন্তর্বস্তু (Core) নির্মাণে ইস্পাতের পরিবর্তে কাঁচা লোহা ব্যবহার করা হয়।

Content added By
Promotion