তথ্য ও উপাত্ত লেখচিত্রের মাধ্যমে উপস্থাপন একটি বহুলপ্রচলিত পদ্ধতি। কোনো পরিসংখ্যানে ব্যবহৃত উপাত্ত লেখচিত্রের মাধ্যমে উপস্থাপিত হলে তা বোঝা ও সিদ্ধান্ত গ্রহণের জন্য খুব সুবিধাজনক হয়। অধিকন্তু চিত্রের মাধ্যমে উপস্থাপিত উপাত্ত চিত্তাকর্ষকও হয়। তাই বুঝা ও সিদ্ধান্ত গ্রহণের সুবিধার্থে উপাত্তসমূহের গণসংখ্যা নিবেশনের চিত্র লেখচিত্রের মাধ্যমে উপস্থাপন করা হয়। গণসংখ্যা নিবেশন উপস্থাপনে বিভিন্ন রকম লেখচিত্রের ব্যবহার থাকলেও এখানে কেবলমাত্র আয়তলেখ ও পাইচিত্র নিয়ে আলোচনা করা হবে।
আয়তলেখ (Histogram) : গণসংখ্যা নিবেশনের একটি লেখচিত্র হচ্ছে আয়তলেখ । আয়তলেখ অঙ্কনের জন্য ছক কাগজে x ও y-অক্ষ আঁকা হয়। x-অক্ষ বরাবর শ্রেণিব্যাপ্তি এবং y-অক্ষ বরাবর গণসংখ্যা নিয়ে আয়তলেখ আঁকা হয় । আয়তের ভূমি হয় শ্রেণিব্যাপ্তি এবং উচ্চতা হয় গণসংখ্যা।
উদাহরণ ১। নিচে ৫০ জন শিক্ষার্থীর উচ্চতার গণসংখ্যা নিবেশন দেওয়া হলো। একটি আয়তলেখ আঁক।
উচ্চতার শ্রেণিব্যাপ্তি (সেমিতে) | ১১৪-১২৪ | ১২৪-১৩৪ | ১৩৪-১৪৪ | ১৪৪-১৫৪ | ১৫৪-১৬৪ | ১৬৪-১৭৪ |
গণসংখ্যা (শিক্ষার্থীর সংখ্যা | ৩ | ৫ | ১০ | ২০ | ৮ | ৪ |
ছক কাগজের ১ ঘর সমান শ্রেণিব্যাপ্তির ২ একক ধরে x-অক্ষে শ্রেণিব্যাপ্তি এবং ছক কাগজের ১ ঘর সমান গণসংখ্যার ১ একক ধরে y-অক্ষে গণসংখ্যা নিবেশন স্থাপন করে গণসংখ্যা নিবেশনের আয়তলেখ আঁকা হলো। x-অক্ষের মূলবিন্দু থেকে ১১৪ ঘর পর্যন্ত ভাঙা চিহ্ন দিয়ে আগের ঘরগুলো বিদ্যমান বোঝানো হয়েছে।
কাজ : (ক) ৩০ জন নিয়ে দল গঠন কর। দলের সদস্যদের গণিতে প্রাপ্ত নম্বরের গণসংখ্যা নিবেশন সারণি তৈরি কর। (খ) গণসংখ্যা নিবেশনের আয়তলেখ আঁক। |
পাইচিত্র (Pie Chart): পাইচিত্রও একটি লেখচিত্র। অনেক সময় সংগৃহীত পরিসংখ্যান কয়েকটি উপাদানের সমষ্টি দ্বারা গঠিত হয় অথবা একে কয়েকটি শ্রেণিতে ভাগ করা হয়। এ সকল ভাগকে একটি বৃত্তের অভ্যন্তরে বিভিন্ন অংশে প্রকাশ করলে যে লেখচিত্র পাওয়া যায় তাই পাইচিত্র। পাইচিত্রকে বৃত্তলেখও বলা হয়। আমরা জানি, বৃত্তের কেন্দ্রে সৃষ্ট কোণের পরিমাণ ৩৬০°। কোনো পরিসংখ্যান ৩৬০° এর অংশ হিসেবে উপস্থাপিত হলে তা হবে পাইচিত্র।
আমরা জানি, ক্রিকেটখেলায় ১, ২, ৩, ৪, ও ৬ করে রান সংগৃহীত হয়। তাছাড়া নো-বল ও ওয়াইড বলের জন্য অতিরিক্ত রান সংগৃহীত হয়। কোনো-এক খেলায় বাংলাদেশ ক্রিকেট দলের সংগৃহীত রান নিচের সারণিতে দেওয়া হলো :
রান সংগ্রহ | ১ করে | ২ করে | ৩ করে | ৪ করে | ৬ করে | অতিরিক্ত রান | মোট |
বিভিন্ন প্রকারের সংগৃহীত রান | ৬৬ | ৫০ | ৩৬ | ৪৮ | ৩০ | ১০ | ২৪০ |
ক্রিকেটখেলার উপাত্ত পাইচিত্রের মাধ্যমে দেখানো হলে, বোঝার জন্য যেমন সহজ হয় তেমনি চিত্তাকর্ষকও হয়। আমরা জানি, বৃত্তের কেন্দ্রে সৃষ্ট কোণ ৩৬০°। উপরে বর্ণিত উপাত্ত ৩৬০°-এর অংশ হিসেবে উপস্থাপন করা হলে, উপাত্তের পাইচিত্র পাওয়া যাবে।
২৪০ রানের জন্য কোণ = ৩৬০°
∴ ১ '' '' ''
∴ ৬৬ '' '' ''
৫০ রানের জন্য কোণ = ৩৬০° = ৭৫°
৩৬ রানের জন্য কোণ = ৩৬০° = ৫৪°
৪৮ রানের জন্য কোণ = ৩৬০° = ৭২°
৩০ রানের জন্য কোণ = ৩৬০° = ৪৫°
১০ রানের জন্য কোণ = ৩৬০° = ১৫°
এখন, প্রাপ্ত কোণগুলো ৩৬০°-এর অংশ হিসাবে আঁকা হলো। যা বর্ণিত উপাত্তের পাইচিত্র।
উদাহরণ ২। কোনো এক বছরে দুর্ঘটনাজনিত কারণে সংঘটিত মৃত্যুর সারণি নিচে দেয়া হলো। একটি পাইচিত্র আঁক।
দুর্ঘটনা | বাস | ট্রাক | কার | নৌযান | মোট |
মৃতের সংখ্যা | ৪৫০ | ৩৫০ | ২৫০ | ১৫০ | ১২০০ |
উদাহরণ ৩। দুর্ঘটনায় মৃত ৪৫০ জনের মধ্যে কতজন নারী, পুরুষ ও শিশু তা পাইচিত্রে দেখানো হয়েছে। নারীর জন্য নির্দেশিত কোণ ৮০°। নারীর সংখ্যা কত?
কাজ : ১। তোমাদের শ্রেণিতে অধ্যয়নরত শিক্ষার্থীদের ৬ জন করে নিয়ে দল গঠন কর। দলের সদস্যরা নিজেদের উচ্চতা মাপ এবং প্রাপ্ত উপাত্ত পাইচিত্রের মাধ্যমে দেখাও। ২। তোমরা তোমাদের পরিবারের সকলের বয়সের উপাত্ত নিয়ে পাইচিত্র আঁক। প্রত্যেকের বয়সের নির্ধারিত কোণের জন্য কার বয়স কত তা নির্ণয়ের জন্য পাশের শিক্ষার্থীর সাথে খাতা বদল কর। |
আরও দেখুন...