স্পর্শকের দৈর্ঘ্য

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ১ম পত্র | - | NCTB BOOK
157
157

কোনো নির্দিষ্ট বিন্দু থেকে বৃত্তের উপর অঙ্কিত একটি স্পর্শকের দৈর্ঘ্য নির্ণয়ের জন্য একটি সূত্র রয়েছে। যদি \((x_1, y_1)\) বিন্দুটি বৃত্তের বাইরের কোনো বিন্দু হয় এবং বৃত্তের সমীকরণটি হয়:

\[
(x - h)^2 + (y - k)^2 = r^2
\]

এখানে \((h, k)\) হলো বৃত্তের কেন্দ্র এবং \(r\) হলো বৃত্তের ত্রিজ্যা, তাহলে \((x_1, y_1)\) বিন্দু থেকে বৃত্তের উপর অঙ্কিত স্পর্শকের দৈর্ঘ্য \(PT\) হবে:

\[
PT = \sqrt{(x_1 - h)^2 + (y_1 - k)^2 - r^2}
\]

এখানে:

  • \((x_1, y_1)\) হলো বৃত্তের বাইরের বিন্দু।
  • \((h, k)\) হলো বৃত্তের কেন্দ্র।
  • \(r\) হলো বৃত্তের ত্রিজ্যা।

এই সূত্র থেকে আমরা নির্দিষ্ট কোনো বাইরের বিন্দু থেকে বৃত্তের উপর অঙ্কিত স্পর্শকের দৈর্ঘ্য বের করতে পারি।

# বহুনির্বাচনী প্রশ্ন

Promotion