কনিক (Conics) হল গাণিতিক বিশেষণ যা বিভিন্ন ধরনের রেখার বা কার্ভের একটি গ্রুপকে বোঝাতে ব্যবহৃত হয়, যা একটি কনিকে তৈরি হয়। কনিকের মধ্যে প্রধানত ৪টি ধরনের গাণিতিক আকার রয়েছে:
১. পরাবৃত্ত (Ellipse) – এটি একটি দ্বি-মাত্রিক উপবৃত্তাকার আকার, যেখানে দুটি ফোকাল পয়েন্ট থাকে এবং প্রতিটি বিন্দু এই দুটি ফোকাল পয়েন্টের সমষ্টিগত দৈর্ঘ্য সমান থাকে।
২. বৃত্ত (Circle) – এটি একটি বিশেষ ধরনের পরাবৃত্ত যা সব দিক থেকে সমান দৈর্ঘ্যের। বৃত্তের সকল পয়েন্ট কেন্দ্র থেকে সমান দুরত্বে অবস্থিত।
৩. অর্ন্তবৃত্ত (Hyperbola) – এটি দুটি ভিন্ন ভিন্ন অংশ নিয়ে গঠিত যা সমান্তরাল রেখা এবং কিছু নির্দিষ্ট ফোকাল পয়েন্টের মধ্যে সৃষ্টি হয়।
৪. অবতল পরাবৃত্ত (Parabola) – এটি একটি বাঁকা রেখা যা একটি একক ফোকাল পয়েন্টের সাথে সম্পর্কিত এবং অক্ষের সাথে একটি নির্দিষ্ট কোণে থাকে।
এই কনিকের সমীকরণগুলি সাধারণত দ্বিতীয় ডিগ্রি সমীকরণ হিসেবে প্রকাশ করা হয় এবং এটি বিশেষভাবে ইউক্লিডীয় জ্যামিতি ও ক্যালকুলাসের নানা ক্ষেত্রে ব্যবহৃত হয়।
3
4
2
-3
(3,-4)
(-3, 4)
(-3,-4)
(-4, 3)
1
√2
-√2
1+√2
1-√2
e<1
c=1
e>1
c=0
x = 0
y = 0
x=2
y = 2
x = y
x-y+4=0
x+y-2=0
2x-y+4
2x+y+4=0
x-y+4=0
y=−x+2
2x-y+4
2x+Y+4=0
16y2 - 9x2 = 144
9x2 - 16y2 = 144 একটি অধিবৃত্তের সমীকরণ।
25x2 - 16y2 + 400 = 0 একটি অধিবৃত্তের সমীকরণ।
8x2 + 3y2 = 1 একটি উপবৃত্তের সমীকরণ।
স্থানাঙ্কের অক্ষদ্বয়কে উপবৃত্তের অক্ষ ধরে ক্ষুদ্রাক্ষের দৈর্ঘ্য 2 একক এবং উৎকেন্দ্রিকতা
9x2 – 4y2 + 36 = 0 একটি অধিবৃত্তের সমীকরণ।
8x2 + 3y2 = 1 একটি উপবৃত্তের সমীকরণ।
y2 = 1 - x একটি পরাবৃত্তের সমীকরণ।
কোনো পরাবৃত্তের সমীকরণ, x2 = a(y – a).
9x2 – 4y2 + 36 = 0 একটি অধিবৃত্তের সমীকরণ।
y2 - 4y - 4x + 16 = 0 একটি পরাবৃত্তের সমীকরণ।
x2+ py2 = 1 উপবৃত্তটি বিন্দুগামী।
একটি উপবৃত্তের সমীকরণ।
y = ax2 + bx + c (a ≠ 0) বক্ররেখাটির একটি প্যারাবোলার সমীকরণ।
উপবৃত্তটির উৎকেন্দ্রিকতা
x2 + 3y2 = 4 একটি উপবৃত্তের সমীকরণ নির্দেশ করে।
x = pt2 ও y = 2pt পরামিতিক সমীকরণ।
একটি উপবৃত্তের সমীকরণ।
y = mx + c রেখাটি y2 = 4ax পরাবৃত্তের স্পর্শক।
3y2 = 27x একটি পরাবৃত্ত।
y2 = 8x + 5 একটি পরাবৃত্ত।
y2 = 12x একটি পরাবৃত্ত এবং x + 2y - 1 = 0 একটি রেখা।
পরাবৃত্ত (Ellipse) হলো কনিকের একটি বিশেষ ধরনের আকার, যা দুটি ফোকাল পয়েন্টের মধ্যে এমন একটি নির্দিষ্ট সম্পর্ক তৈরি করে যে, এর যেকোনো বিন্দুর জন্য দুই ফোকাল পয়েন্টের মধ্যে দূরত্বের যোগফল সবসময় একটি নির্দিষ্ট পরিমাণে থাকে। পরাবৃত্তের বিভিন্ন বৈশিষ্ট্য ও গাণিতিক ব্যাখ্যা এখানে বিস্তারিতভাবে আলোচনা করা হলো।
একটি পরাবৃত্ত দুটি প্রধান অক্ষ দ্বারা গঠিত:
পরাবৃত্তের সমীকরণটি দুটি অক্ষের দৈর্ঘ্য ও কেন্দ্রে দুটি ফোকাল পয়েন্টের অবস্থান বিবেচনায় নিয়ে লেখা হয়। একটি সাধারণ পরাবৃত্তের সমীকরণ হলো:
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]
এখানে:
যদি \(a > b\), তাহলে পরাবৃত্তটি অনুভূমিকভাবে বিস্তৃত থাকে, এবং যদি \(b > a\), তাহলে এটি উল্লম্বভাবে বিস্তৃত থাকে।
\[
c = \sqrt{a^2 - b^2}
\]
এখানে \(c\) হলো ফোকাল পয়েন্টের কেন্দ্র থেকে পরাবৃত্তের কেন্দ্র পর্যন্ত দূরত্ব।
পরাবৃত্তের বিভিন্ন বাস্তব জীবনের প্রয়োগ রয়েছে:
এইভাবে পরাবৃত্ত একটি গুরুত্বপূর্ণ গাণিতিক ধারণা এবং বাস্তব জীবনে এর বহুল ব্যবহার রয়েছে।
উপবৃত্ত (Hyperbola) হলো কনিকের একটি বিশেষ ধরনের আকার, যা দুটি পৃথক শাখার দ্বারা গঠিত। এটি একটি গাণিতিক বক্ররেখা, যা দুটি ফোকাল পয়েন্টের সাথে সম্পর্কিত এবং এটি দুইটি শাখায় বিভক্ত থাকে। উপবৃত্তের বৈশিষ্ট্য এবং গাণিতিক ব্যাখ্যা এখানে বিস্তারিতভাবে আলোচনা করা হলো।
একটি উপবৃত্ত দুটি প্রধান শাখা নিয়ে গঠিত, যেগুলি মূলত দুটি পৃথক কনিকে তৈরি হয়। উপবৃত্তের প্রধান বৈশিষ্ট্য হলো যে এটি একটি নির্দিষ্ট মানের সাথে সম্পর্কিত যেখানে কোনো বিন্দু থেকে দুটি ফোকাল পয়েন্টের মধ্যে দূরত্বের পার্থক্য সবসময় একটি নির্দিষ্ট মানে থাকে।
একটি সাধারণ উপবৃত্তের সমীকরণ হলো:
\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
\]
এখানে:
যদি \(x^2/a^2 - y^2/b^2 = 1\) সমীকরণটি পূর্ণ হয়, তবে এটি একটি উপবৃত্তের সমীকরণ। উপবৃত্তের শাখাগুলি \(x\)-অক্ষের সাথে সম্পর্কিত থাকে, এবং এটি দুটি শাখায় বিভক্ত হয়।
\[
c = \sqrt{a^2 + b^2}
\]
এখানে \(c\) হলো ফোকাস থেকে কেন্দ্র পর্যন্ত দূরত্ব।
উপবৃত্তের বিভিন্ন বাস্তব জীবনের প্রয়োগ রয়েছে, বিশেষত গাণিতিক এবং বৈজ্ঞানিক ক্ষেত্রে:
এইভাবে, উপবৃত্ত একটি গুরুত্বপূর্ণ কনিক এবং বাস্তব জীবনে এর অনেক ব্যবহার রয়েছে।
অধিবৃত্ত (Parabola) হলো কনিকের আরেকটি বিশেষ ধরনের আকার, যা একটি বাঁকা রেখা হিসেবে পরিচিত। এটি এমন একটি গাণিতিক আকার, যার প্রতিটি বিন্দু একটি নির্দিষ্ট ফোকাল পয়েন্ট এবং একটি নির্দিষ্ট রেখা (ডিরেকট্রিক্ট) থেকে সমান দূরত্বে অবস্থান করে। অধিবৃত্তের গঠন এবং এর বৈশিষ্ট্যগুলোর একটি বিস্তারিত আলোচনা এখানে করা হলো।
অধিবৃত্তের প্রধান বৈশিষ্ট্য হলো, এটি একটি বাঁকা রেখা যা একটি ফোকাল পয়েন্ট এবং একটি ডিরেকট্রিক্ট (নির্দেশক রেখা) এর সাথে সম্পর্কিত। একটি অধিবৃত্তের প্রতিটি বিন্দু ফোকাল পয়েন্ট এবং ডিরেকট্রিক্টের সাথে সমান দূরত্বে থাকে। অধিবৃত্তটি একক শাখায় বিভক্ত থাকে এবং এটি একটি "U" আকৃতির বক্ররেখা তৈরি করে।
অধিবৃত্তের সাধারণ সমীকরণ হলো:
\[
y^2 = 4ax
\]
এখানে:
এছাড়া, যদি অধিবৃত্তটি উল্লম্বভাবে বিস্তৃত থাকে (অথবা \(y\)-অক্ষ বরাবর), তবে এর সমীকরণ হবে:
\[
x^2 = 4ay
\]
এখানে \(a\) হলো ফোকাল পয়েন্টের থেকে ডিরেকট্রিক্টের দূরত্ব।
অধিবৃত্তের বিভিন্ন বাস্তব জীবনে ব্যবহার রয়েছে, বিশেষ করে ইঞ্জিনিয়ারিং, ফিজিক্স এবং বিভিন্ন প্রযুক্তিগত ক্ষেত্রে:
এভাবেই অধিবৃত্তের আকার এবং এর বৈশিষ্ট্য গাণিতিক এবং বাস্তব জীবনে গুরুত্বপূর্ণ ভূমিকা পালন করে।
Read more