a11a12a13a21a22a23a31a32a33 মেট্রিক্সে aij এর সহগুণক Aij হলে, a21A11+a22A12+a23A13 এর মান কত?

Created: 1 year ago | Updated: 8 months ago
Updated: 8 months ago

ম্যাট্রিক্স অ্যালজেব্রার মধ্যে সমতা, যোগ, বিয়োগ ও গুণের বিভিন্ন নিয়ম রয়েছে। নিচে প্রতিটি নিয়মের ব্যাখ্যা দেয়া হলো:


ম্যাট্রিক্সের সমতা (Equality of Matrices):
দুটি ম্যাট্রিক্স \(A\) এবং \(B\) সমান হবে যদি:

  1. তাদের আকার (রো এবং কলামের সংখ্যা) একই হয়।
  2. তাদের প্রতিটি উপাদান সমান হয়, অর্থাৎ \(a_{ij} = b_{ij}\)।

যদি এই দুই শর্ত পূর্ণ হয়, তবে \(A = B\)।


ম্যাট্রিক্সের যোগ (Addition of Matrices):
যদি দুটি ম্যাট্রিক্সের আকার (রো এবং কলাম সংখ্যা) একই হয়, তবে তাদের যোগ করা সম্ভব। \(A\) এবং \(B\) দুটি ম্যাট্রিক্স হলে তাদের যোগকে \(A + B\) হিসেবে প্রকাশ করা হয়। এটি নিচের নিয়ম অনুসারে হয়:

\[
(A + B){ij} = a{ij} + b_{ij}
\]

উদাহরণস্বরূপ, যদি

\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{এবং} \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}
\]

তাহলে,

\[
A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}
\]


ম্যাট্রিক্সের বিয়োগ (Subtraction of Matrices):
যদি দুটি ম্যাট্রিক্সের আকার একই হয়, তবে তাদের বিয়োগ করা সম্ভব। \(A\) এবং \(B\) দুটি ম্যাট্রিক্স হলে তাদের বিয়োগকে \(A - B\) হিসেবে প্রকাশ করা হয়। এটি নিচের নিয়ম অনুসারে হয়:

\[
(A - B){ij} = a{ij} - b_{ij}
\]

উদাহরণস্বরূপ, যদি

\[
A = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \quad \text{এবং} \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]

তাহলে,

\[
A - B = \begin{pmatrix} 5-1 & 6-2 \\ 7-3 & 8-4 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix}
\]


ম্যাট্রিক্সের গুণ (Multiplication of Matrices):
ম্যাট্রিক্সের গুণ দুই ধরনের হতে পারে: স্কেলার গুণ এবং ম্যাট্রিক্স গুণ।

১. স্কেলার গুণ (Scalar Multiplication):
কোনো ম্যাট্রিক্সের প্রতিটি উপাদানকে একটি নির্দিষ্ট স্কেলার সংখ্যার সাথে গুণ করা হয়। যদি \(k\) একটি স্কেলার সংখ্যা এবং \(A\) একটি ম্যাট্রিক্স হয়, তবে \(kA\) এর উপাদানগুলো হবে \(k \cdot a_{ij}\)।

উদাহরণস্বরূপ, যদি

\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{এবং} \quad k = 3
\]

তাহলে,

\[
kA = 3 \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix}
\]

২. ম্যাট্রিক্স গুণ (Matrix Multiplication):
দুটি ম্যাট্রিক্স \(A\) এবং \(B\) গুণ করতে হলে \(A\)-এর কলামের সংখ্যা এবং \(B\)-এর সারির সংখ্যা সমান হতে হবে। যদি \(A\) একটি \(m \times n\) ম্যাট্রিক্স এবং \(B\) একটি \(n \times p\) ম্যাট্রিক্স হয়, তবে তাদের গুণফল \(AB\) একটি \(m \times p\) ম্যাট্রিক্স হবে।

প্রতিটি উপাদান \(c_{ij}\) নির্ণয় করার নিয়ম হলো:

\[
c_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj}
\]

উদাহরণস্বরূপ, যদি

\[
A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{এবং} \quad B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}
\]

তাহলে,

\[
AB = \begin{pmatrix} (1 \cdot 2 + 2 \cdot 1) & (1 \cdot 0 + 2 \cdot 3) \\ (3 \cdot 2 + 4 \cdot 1) & (3 \cdot 0 + 4 \cdot 3) \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix}
\]


এগুলোই ম্যাট্রিক্সের সমতা, যোগ, বিয়োগ এবং গুণের প্রধান নিয়ম।

Content updated By
Promotion