বৃত্ত

অষ্টম শ্রেণি (মাধ্যমিক) - গণিত - NCTB BOOK

প্রতিদিন আমরা কিছু জিনিস দেখি ও ব্যবহার করি যা বৃত্তাকার : যেমন, গাড়ির চাকা, চুড়ি, ঘড়ি, বোতাম, থালা, মুদ্রা ইত্যাদি । আমরা দেখি যে, ঘড়ির সেকেন্ডের কাঁটার অগ্রভাগ গোলাকার পথে ঘুরতে থাকে। সেকেন্ডের কাঁটার অগ্রভাগ যে পথ চিহ্নিত করে একে বৃত্ত বলে। বৃত্তাকার বস্তুকে আমরা নানাভাবে ব্যবহার করি। '12''

অধ্যায় শেষে শিক্ষার্থীরা-

➤ বৃত্তের ধারণা লাভ করবে।

➤ পাই (π)এর ধারণা ব্যাখ্যা করতে পারবে।

➤ বৃত্তাকার ক্ষেত্রের ক্ষেত্রফল ও পরিসীমা নির্ণয় করে সমস্যা সমাধান করতে পারবে।

➤ বৃত্ত সংক্রান্ত উপপাদ্য প্রয়োগ করে সমস্যা সমাধান করতে পারবে এবং পরিমাপক ফিতা ব্যবহার করে বৃত্তাকার ক্ষেত্রের পরিসীমা ও ক্ষেত্রফল পরিমাপ করতে পারবে।

➤ চতুর্ভুজ ও বৃত্তের ক্ষেত্রফলের সাহায্যে বেলনের পৃষ্ঠের ক্ষেত্রফল পরিমাপ করতে পারবে।

Content added || updated By

এক টাকার একটি বাংলাদেশি মুদ্রা নিয়ে সাদা কাগজের উপর রেখে মুদ্রাটির মাঝ বরাবর বাঁ হাতের তর্জনি দিয়ে চেপে ধরি। এই অবস্থায় ডান হাতে সরু পেন্সিল নিয়ে মুদ্রাটির গাঁ ঘেষে চারদিকে ঘুরিয়ে আনি। মুদ্রাটি সরিয়ে নিলে কাগজে একটি গোলাকার আবদ্ধ বক্ররেখা দেখা যাবে। এটি একটি বৃত্ত।

নিখুঁতভাবে বৃত্ত আঁকার জন্য পেন্সিল কম্পাস ব্যবহার করা হয়। কম্পাসের কাঁটাটি কাগজের উপর চেপে ধরে অপর প্রান্তে সংযুক্ত পেন্সিলটি কাগজের উপর চারদিকে ঘুরিয়ে আনলেই একটি হয়ে থাকে, যেমনটি চিত্রে দেখানো হয়েছে। তাহলে বৃত্ত আঁকার সময় 'বৃত্ত আঁকা নির্দিষ্ট একটি বিন্দু থেকে সমদূরবর্তী বিন্দুগুলোকে আঁকা হয়। এই নির্দিষ্ট বিন্দুটি বৃত্তের কেন্দ্র। কেন্দ্র থেকে সমদূরবর্তী যেকোনো বিন্দুর দূরত্বকে বৃত্তের ব্যাসার্ধ বলা হয়।

কাজ :

১। পেন্সিল কম্পাসের সাহায্যে O কেন্দ্রবিশিষ্ট 4 সে.মি. ব্যাসার্ধের একটি বৃত্ত আঁক। বৃত্তের উপরে| বিভিন্ন জায়গায় কয়েকটি বিন্দু A, B, C, D নিয়ে কেন্দ্র থেকে বিন্দুগুলো পর্যন্ত রেখাংশগুলো আঁক। রেখাংশগুলোর দৈর্ঘ্য পরিমাপ কর। কী লক্ষ কর?

Content added || updated By

বৃত্তের জ্যা ও চাপ (Chord and Arc of a Circle)

উপরের চিত্রে, একটি বৃত্ত দেখানো হয়েছে, যার কেন্দ্র O । বৃত্তের উপর যেকোনো বিন্দু P, Q নিয়ে এদের সংযোজক রেখাংশ PQ টানি। PQ রেখাংশ বৃত্তটির একটি জ্যা। জ্যা দ্বারা বৃত্তটি দুইটি অংশে বিভক্ত হয়েছে । জ্যাটির দুই পাশের দুই অংশে বৃত্তটির উপর দুইটি বিন্দু Y, Z নিলে ঐ দুইটি অংশের নাম PYQ ও PZQ । জ্যা দ্বারা বিভক্ত বৃত্তের প্রত্যেক অংশকে বৃত্তচাপ, বা সংক্ষেপে চাপ বলে। চিত্রে, PQ জ্যা দ্বারা সৃষ্ট চাপ দুইটি হচ্ছে PYQ ও PZQ । 

বৃত্তের যেকোনো দুইটি বিন্দুর সংযোজক রেখাংশ বৃত্তটির একটি জ্যা। প্রত্যেক জ্যা বৃত্তকে দুইটি চাপে বিভক্ত করে।

Content added || updated By

ব্যাস ও পরিধি (Diameter and Circumference)

পাশের চিত্রে, AB এমন একটি জ্যা, যা বৃত্তের কেন্দ্র O দিয়ে গেছে। এরূপ ক্ষেত্রে আমরা বলি, জ্যাটি বৃত্তের একটি ব্যাস। ব্যাসের দৈর্ঘ্যকেও ব্যাস বলা হয়। AB ব্যাসটি দ্বারা সৃষ্ট চাপ দুইটি সমান; এরা প্রত্যেকে একটি অর্ধবৃত্ত। বৃত্তের কেন্দ্রগামী যেকোনো জ্যা, বৃত্তের একটি ব্যাস। ব্যাস বৃত্তের বৃহত্তম জ্যা। বৃত্তের প্রত্যেক ব্যাস বৃত্তকে দুইটি অর্ধবৃত্তে বিভক্ত করে। ব্যাসের অর্ধেক দৈর্ঘ্যকে ব্যাসার্ধ বলে। ব্যাস ব্যাসার্ধের দ্বিগুণ।

বৃত্তের সম্পূর্ণ দৈর্ঘ্যকে পরিধি বলে। অর্থাৎ বৃত্তস্থিত যেকোনো বিন্দু P থেকে বৃত্ত বরাবর ঘুরে পুনরায় P বিন্দু পর্যন্ত পথের দূরত্বই পরিধি। বৃত্ত সরলরেখা নয় বলে রুলারের সাহায্যে বৃত্তের পরিধির দৈর্ঘ্য পরিমাপ করা যায় না। পরিধি মাপার একটি সহজ উপায় আছে। ছবি আকার কাগজে একটি বৃত্ত এঁকে বৃত্ত বরাবর কেটে নাও। পরিধির উপর একটি বিন্দু চিহ্নিত কর। এবার কাগজে একটি রেখাংশ আঁক এবং বৃত্তাকার কার্ডটি কাগজের উপর খাড়াভাবে রাখ যেন পরিধির চিহ্নিত বিন্দুটি রেখাংশের এক প্রান্তের সাথে মিলে যায। এখন কার্ডটি রেখাংশ বরাবর গড়িয়ে নাও যতক্ষণ-না পরিধির চিহ্নিত বিন্দুটি রেখাংশকে পুনরায় স্পর্শ করে। স্পর্শবিন্দুটি চিহ্নিত কর এবং রেখাংশের প্রান্তবিন্দু থেকে এর দৈর্ঘ্য পরিমাপ কর। এই পরিমাপই পরিধির দৈর্ঘ্য। লক্ষ কর, ছোট বৃত্তের ব্যাস ছোট, পরিধিও ছোট; অন্যদিকে বড় বৃত্তের ব্যাস বড়, পরিধিও বড়।

Content added By
Please, contribute to add content into অনুশীলনী ১০.১.
Content
সমকেন্দ্রিক বৃত্ত
সমবৃত্ত
একই ব্যাসার্ধবিশিষ্ট বৃত্ত
বিন্দুবৃত্ত

কাজ :

১। ট্রেসিং কাগজে যেকোনো ব্যাসার্ধের একটি বৃত্ত আঁক। O, বৃত্তের কেন্দ্র নাও। ব্যাস ভিন্ন একটি জ্যা AB আঁক। O বিন্দুর মধ্য দিয়ে কাগজটি এমনভাবে ভাঁজ কর যেন, জ্যা-এর প্রান্তবিন্দুদ্বয় A ও B মিলে যায়। ভাঁজ বরাবর রেখাংশ OM আঁক যা জ্যাকে M বিন্দুতে ছেদ করে। তা হলে M জ্যা-এর মধ্যবিন্দু। ZOMA ও ZOMB কোণগুলো পরিমাপ কর। এরা প্রত্যেকে কি এক সমকোণের সমান?

উপপাদ্য ১।

বৃত্তের কেন্দ্র ও ব্যাস ভিন্ন কোনো জ্যা-এর মধ্যবিন্দুর সংযোজক রেখাংশ ঐ জ্যা-এর উপর লম্ব।

মনে করি, O কেন্দ্রবিশিষ্ট বৃত্তে AB ব্যাস নয় এমন একটি জ্যা
এবং M এই জ্যা-এর মধ্যবিন্দু। O, M যোগ করি। 

প্রমাণ করতে হবে যে, OM রেখাংশ AB জ্যা-এর উপর লম্ব।

অঙ্কন : O, A এবং O, B যোগ করি।

প্রমাণ :

ধাপযথার্থতা

(১) ADAM এবং AOBM এ

            AM = BM

            OA = OB

এবং     OM = OM

সুতরাং ∆OAM ≅ ∆OBM

∴          ∠OMA = ∠OMB

(২) যেহেতু কোণদ্বয় রৈখিক যুগল কোণ এবং এদের পরিমাপ সমান,

সুতরাং, ∠OMA = ∠OMB = ১ সমকোণ।

অতএব, OM | AB (প্রমাণিত)

[M, AB এর মধ্যবিন্দু]

[উভয়ে একই বৃত্তের ব্যাসার্ধ]

[সাধারণ বাহু]

[বাহু-বাহু-বাহু উপপাদ্য]

 

 

 

কাজ : প্রমাণ কর যে, বৃত্তের কেন্দ্র থেকে ব্যাস ভিন্ন অন্য কোনো জ্যা-এর উপর অঙ্কিত লম্ব ঐ জ্যাকে সমদ্বিখণ্ডিত করে। [ইঙ্গিত : সমকোণী ত্রিভুজের সর্বসমতা ব্যবহার কর]

অনুসিদ্ধান্ত ১। বৃত্তের যেকোনো জ্যা-এর লম্বসম-দ্বিখণ্ডক কেন্দ্রগামী।

অনুসিদ্ধান্ত ২। যেকোনো সরলরেখা একটি বৃত্তকে দুইয়ের অধিক বিন্দুতে ছেদ করতে পারে না।

 

 

 

Content added || updated By
Please, contribute to add content into অনুশীলনী ১০.২.
Content

আরও দেখুন...

Promotion