সুষম বৃত্তাকার গতিতে কেন্দ্রমুখী ত্বরণ

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা - পদার্থবিজ্ঞান – ১ম পত্র | NCTB BOOK
2.5k

কোনো বস্তু যখন সমদ্রুতিতে সরলপথে চলে তখন তার গতিকে সুষম গতি বলে। এ সুষম গতিতে বস্তুর কোনো ত্বরণ থাকে না। কেননা বেগের পরিবর্তনের হারকে ত্বরণ বলে। যেহেতু বেগ একটি ভেক্টর রাশি, তাই এর মান কিংবা দিক যেকোনো একটির অথবা উভয়টির পরিবর্তন হলেই বেগের পরিবর্তন হয় তথা ত্বরণ হয়। আবার বেগের মানই হচ্ছে দ্রুতি। সুষম গতির ক্ষেত্রে বস্তু সম্প্রতিতে চলে বলে বেগের মানের পরিবর্তন হয় না, আর সরল পথে চলে বলে বেগের দিকের পরিবর্তন হয় না, তাই সুষম গতিতে সরল পথে চলন্ত বস্তুর কোনো ত্বরণ থাকে না।

চিত্র :৩.১৯

যখন কোনো বস্তু সমদ্রুতিতে বৃত্তের পরিধি বরাবর ঘুরতে থাকে তখন ঐ বস্তুর গতিকে সুষম বৃত্তাকার গতি বলে। ঐ রূপ গতিতে বস্তু সম্প্রতিতে। চলে বলে বস্তুর বেগের মানের কোনো পরিবর্তন হয় না, কিন্তু বেগের দিকের পরিবর্তন হয়। কেননা বৃত্তাকার পথের কোনো বিন্দুতে বেগের দিক বৃত্তের পরিধির উপর ঐ বিন্দুতে অঙ্কিত স্পর্শক বরাবর (চিত্র : ৩:১৯)। পরিধির বিভিন্ন বিন্দুতে স্পর্শকের অভিমুখ বিভিন্ন বলে বেগের দিক প্রতিনিয়ত পরিবর্তিত হচ্ছে অর্থাৎ বেগেরও পরিবর্তন হচ্ছে অবিরত। সুতরাং বস্তুর ত্বরণ হচ্ছে। তাই বৃত্তাকার পথে সমদ্রুতিতে চললেও বস্তুর ত্বরণ থাকে এ ত্বরণ বৃত্তাকার পথের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে ক্রিয়া করে বলে একে কেন্দ্রমুখী ত্বরণ বলা হয়।

 কেন্দ্রমুখী ত্বরণ : 

সময় ব্যবধান শূন্যের কাছাকাছি হলে বৃত্তাকার পথে চলমান কোনো বস্তুর সময়ের সাথে বৃত্তের ব্যাসার্ধ বরাবর এবং বৃত্তের কেন্দ্রের দিকে বেগের পরিবর্তনের হারকে কেন্দ্রমুখী ত্বরণ বলে । যেহেতু এ ত্বরণ ব্যাসার্ধ বরাবর বৃত্তের কেন্দ্রের দিকে ক্রিয়া করে এজন্য এ ত্বরণকে ব্যাসার্ধমুখী ত্বরণও বলে। আবার, এ ত্বরণ বেগের দিকের সাথে লম্ব বরাবর অর্থাৎ স্পর্শকের সাথে লম্বভাবে ব্যাসার্ধের দিকে ক্রিয়া করে বলে একে লম্ব ত্বরণও বলে।

কেন্দ্রমুখী ত্বরণের মান

৩.২০ ক চিত্রে সুষম বৃত্তাকার গতিতে ঘড়ির কাঁটার গতির দিকে গতিশীল একটি বস্তু দেখানো হলো। A বিন্দুতে এর বেগ vA বৃত্তটির ঐ বিন্দুতে অঙ্কিত স্পর্শক বরাবর। ক্ষুদ্র সময়  ∆t পরে বস্তুটি B বিন্দুতে এলো। এ সময় এর বেগ vB বৃত্তের B বিন্দুতে অঙ্কিত স্পর্শক বরাবর। ধরা যাক, কৌণিক সরণ θ খুবই ক্ষুদ্র।

৩.২০ খ চিত্র হচ্ছে একটি ভেক্টর রেখচিত্র যেখানে বেগ  vAএবং vB  দেখানো হয়েছে।  এবংvB  এর মধ্যবর্তী কোণও হচ্ছে θ । বেগের পরিবর্তন v =  vB -  vAকে  QRদ্বারা প্রকাশ করা হয়েছে। যেহেতু  θ কোণটি খুবই ছোট, কাজেইন v  এর অভিমুখ   vAএবং vB   উভয়ের সাথেই প্রায় লম্ব। অর্থাৎ A বিন্দুতে AO বরাবর তথা বৃত্তের কেন্দ্র বরাবর বস্তুটির বেগের পরিবর্তন বা ত্বরণ হয়। এ ত্বরণকে কেন্দ্রমুখী ত্বরণ বলা হয়।

৩.২০ খ চিত্রে, যেহেতু ∆θ কোণটি খুব ক্ষুদ্র, তাই ∆θ= চাপ/ব্যাসার্ধ 

চিত্র :৩.২০

এখানে v হচ্ছে   vA এবং  vB এর মান। বস্তুটি সুষম দ্রুতিতে ঘুরছে বলে উভয় মানই সমান।

এখন কেন্দ্রমুখী ত্বরণ a হলে,

a= limt0

এ কেন্দ্রমুখী ত্বরণের দিক বৃত্তের কেন্দ্রের অভিমুখে।

(3.55) সমীকরণ থেকে দেখা যায় যেকোনো দৃঢ় বস্তুর কোনো কণার কেন্দ্রমুখী ত্বরণ তার কৌণিক বেগ ও কেন্দ্র থেকে দূরত্বের উপর নির্ভর করে। কোনো কণার কেন্দ্রমুখী ত্বরণ তার কৌণিক বেগের বর্গের সমানুপাতিক এবং ঘূর্ণন কেন্দ্র থেকে দূরত্বের সমানুপাতিক। যেহেতু কোনো দৃঢ় বস্তুর সকল কণার কৌণিক বেগ সমান, সুতরাং যে কণা কেন্দ্র থেকে যত বেশি দূরত্বে থাকবে তার কেন্দ্রমুখী ত্বরণও তত বেশি হবে ।

Content added || updated By

Read more

Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...