তরঙ্গ সংক্রান্ত কয়েকটি সংজ্ঞা

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা - পদার্থবিজ্ঞান – ১ম পত্র | NCTB BOOK
5k
Summary

১৭.৫ তরঙ্গ সংক্রান্ত কয়েকটি সংজ্ঞা 

Some definitions relating waves

তরঙ্গ সংক্রান্ত কয়েকটি রাশির সংজ্ঞা নিম্নে দেয়া হল : 

(১) পূর্ণ কম্পন (Complete oscillation) : কম্পমান বস্তু একটি বিন্দু হতে যাত্রা শুরু করে আবার একই দিক হতে সে বিন্দুতে ফিরে এলে একে পূর্ণ কম্পন বলে।

 

(খ) তরঙ্গ দৈর্ঘ্য (Wave length) : তরঙ্গ সৃষ্টিকারী কোন কম্পনশীল কণার একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় লাগে, ঐ সময়ে তরঙ্গ যে দূরত্ব অতিক্রম করে তাকে তরঙ্গদৈর্ঘ্য বলে। 

তরঙ্গের উপরিস্থিত পরপর দুটি সমদশাসম্পন্ন কণার ন্যূনতম দূরত্বই হল তরঙ্গ দৈর্ঘ্য। একে λλ দ্বারা প্রকাশ করা হয়।

চিত্র :১৭.৭

 আড় তরঙ্গে ক্ষেত্রে পরপর দুটি তরঙ্গশীর্ষ বা পরপর দুটি তরঙ্গ পাদ-এর মধ্যবর্তী দূরত্বকে তরঙ্গদৈর্ঘ্য বলে। চিত্র ১৭.৭-এ AE বা BF বা CG আড় তরঙ্গের ক্ষেত্রে তরঙ্গ দৈর্ঘ্য এবং চিত্র ১৭.৪-এ RR‘ বা CC‘ লম্বিক তরঙ্গের ক্ষেত্রে তরঙ্গ দৈর্ঘ্য।

কোন একটি মাধ্যমে বিভিন্ন শব্দের তরঙ্গ দৈর্ঘ্য বিভিন্ন। একই শব্দের তরঙ্গ বিভিন্ন মাধ্যমেও বিভিন্ন।

(গ) কম্পাঙ্ক বা স্পন্দন সংখ্যা (Frequency) : কোন একটি কম্পমান বস্তু বা কণা এক সেকেণ্ডে যতগুলো পূর্ণ কম্পন সম্পন্ন করে তাকে তাঁর কম্পাঙ্ক বা স্পন্দন সংখ্যা বলে।

কম্পাঙ্ক ηη বা ff দ্বারা প্রকাশ করা হয়।

কোন বস্তু বা কণা t সময়ে N সংখ্যক কম্পন সম্পন্ন করলে কম্পাঙ্ক, ff বা n = NtNt

কম্পাঙ্কের একককে হার্টজ (Hertz সংক্ষেপে Hz) বলে। অনেক সময় সাইকেল/সেকেণ্ড (cs-1) এককও ব্যবহার করা হয়।

(ঘ) দোলনকাল বা পর্যায়কাল (Time period) : কোন একটি কম্পমান বস্তু একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় নেয়, তাকে এর দোলনকাল বা পর্যায়কাল বলে। 

একে T দ্বারা প্রকাশ করা হয়। মনে করি t সেকেন্ডে একটি উৎস Nটি পূর্ণ কম্পন সম্পন্ন করে।

:- দোলন কাল, T=tNT=tN এবং কম্পাঙ্ক,  n=Ntn=Nt

চিত্র ১৭.৭-এ তরঙ্গের B হতে F বা D হতে H-এ যেতে ব্যয়িত সময়ই পর্যায়কাল বা দোলনকাল। 

বিভিন্ন তরঙ্গের পর্যায়কাল বা কম্পাঙ্ক একই মাধ্যমে বিভিন্ন। কিন্তু একই তরঙ্গের কম্পাঙ্ক বা পর্যায়কাল বিভিন্ন মাধ্যমে সমান।

(ঙ) বিস্তার (Amplitude) : কোন একটি কম্পমান বস্তু তার সাম্যাবস্থান হতে ডানে বা বামে অথবা উপরে বা নিচে যে সর্বাধিক দূরত্ব অতিক্রম করে তাকে এর বিস্তার বলে।

  বিস্তার দুই প্রকার, যথা— (ক) রৈখিক বিস্তার, একে সাধারণত 'a' দ্বারা সূচিত করা হয় এবং 

(খ) কৌণিক বিস্তার; একে সাধারণত 'θθ‘ দ্বারা সূচিত করা হয়। চিত্র ১৭.৭-এ BF হতে E বা C বা A-এর লম্ব দূরত্বই রৈখিক বিস্তার ’a'।

কোন শব্দের প্রাবল্য I বিস্তারের বর্গের সমানুপাতিক। অর্থাৎ [Ia2Ia2]

(চ) দশা (Phase) : দশা কোন একটি কম্পমান বস্তুর কোন মুহূর্তের দোলনের অবস্থা প্রকাশ করে।

আরও বিস্তারিতভাবে বলা যায়— তরঙ্গস্থিত কোন একটি কণার কোন মুহূর্তের অবস্থান এবং তার গতির অবস্থা ও দিক যার দ্বারা নির্দেশ করা হয় তাকে দশা বলে। 

(ছ) আদি দশা (Epoch) : কোন একটি কম্পমান বস্তু যে দশা নিয়ে কম্পন শুরু করে, তাকে আদি দশা বলে।

 

(জ) তরঙ্গ বেগ (Wave velocity) : কোন একটি তরঙ্গ কোন মাধ্যমে এক সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে সেই মাধ্যমে এর তরঙ্গ বেগ বলে। একে দ্বারা v' সূচিত করা হয়।

মাধ্যম ভেদে একই শব্দের বেগ বিভিন্ন। কিন্তু বিভিন্ন শব্দের বেগ একই মাধ্যমে সমান। 

(ঝ) তরঙ্গ মুখ (Wave front): কোন তরঙ্গের উপরিস্থিত সমদশাসম্পন্ন সব বিন্দুর মধ্য দিয়ে অঙ্কিত তলকে তরঙ্গ মুখ বলে। 

যেমন পানির তরঙ্গ শীর্ষে অবস্থিত সব কণার দশা একই। তেমনি এর তরঙ্গ

চিত্র :১৭.৮

পাদে অবস্থিত সব কণার দশাও একই। কাজেই তরঙ্গ শীর্ষ বরাবর অঙ্কিত তল হবে একটি তরঙ্গ মুখ এবং তরঙ্গ পাদ বরাবর অঙ্কিত তল হবে আর একটি তরঙ্গ মুখ। পরপর দুটি তরঙ্গ শীর্ষ বা তরঙ্গপাদ বরাবর অঙ্কিত তলের তরঙ্গ মুখের মধ্যবর্তী দূরত্ব এক তরঙ্গ দৈর্ঘ্য [চিত্র ১৭.৮]।

(ঞ) তরঙ্গ শীর্ষ (Crest) : আড় তরঙ্গের ক্ষেত্রে এর ধনদিকে এক তরঙ্গ দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরঙ্গ শীর্ষ বলে [ চিত্র ১৭.৭-এ A ও E বিন্দু] |

 

(ট) তরঙ্গ পাদ (Trough) : আড় তরঙ্গের ক্ষেত্রে এর ঋণদিকে এক তরঙ্গ দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরঙ্গ পাদ বলে | [চিত্র ১৭.৭-এ C বিন্দু ]।

(ঠ) তরঙ্গের তীব্রতা (Intensity of wave) : কোন তরঙ্গের সমকোণে একক ক্ষেত্রফলের  মধ্য দিয়ে এক সেকেন্ডে যে পরিমাণ শক্তি প্রবাহিত হয় তাকে ঐ তরঙ্গের তীব্রতা বলে। একে মাধ্যমের শক্তি প্রবাহও (energy current or energy flux) বলা হয়। একে দ্বারা সূচিত করা হয়।

তরঙ্গের তীব্রতা, I = শক্তি ঘনত্ব × তরঙ্গ বেগ

গাণিতিকভাবে দেখান যায় যে,

I=2ρπ2a2n2vI=2ρπ2a2n2v

এখানে, 

ρρ মাধ্যমের ঘনত্ব

n তরঙ্গের কম্পাঙ্ক

a তরঙ্গের বিস্তার এবং

v তরঙ্গের বেগ ।

উপরের সমীকরণ হতে দেখা যায় যে,

Ia2Ia2

= Ka², এখানে K ধ্রুবক।

অর্থাৎ তীব্রতা (I) বিস্তারের বর্গের সমানুপাতিক। 

এস. আই. পদ্ধতিতে তীব্রতার একক [Jm-1] বা Wm-2

 

Content added || updated By
Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।