জটিল সংখ্যার পরমমান (মডুলাস) ও নতি (আর্গুমেন্ট)

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ২য় পত্র | | NCTB BOOK

জটিল সংখ্যার পরমমান (মডুলাস) এবং নতি (আর্গুমেন্ট) একটি জটিল সংখ্যার জ্যামিতিক বৈশিষ্ট্য নির্ধারণ করে। নিচে এগুলোর বিস্তারিত আলোচনা করা হলো:


জটিল সংখ্যার পরমমান (মডুলাস)

জটিল সংখ্যা \( z = a + bi \) এর পরমমান (মডুলাস) হলো সেই বিন্দুর মূলবিন্দু (origin) থেকে দূরত্ব। পরমমানকে \( |z| \) দিয়ে প্রকাশ করা হয়। মডুলাস নির্ণয়ের সূত্র হলো:

\[
|z| = \sqrt{a^2 + b^2}
\]

এখানে:

  • \( a \) হলো বাস্তব অংশ (Real Part)।
  • \( b \) হলো কাল্পনিক অংশ (Imaginary Part)।

উদাহরণ

যদি \( z = 3 + 4i \) হয়, তবে এর পরমমান হবে:
\[
|z| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5
\]

পরমমান একটি ধনাত্মক সংখ্যা, যা জটিল সংখ্যার নির্দিষ্ট দূরত্ব নির্দেশ করে।


জটিল সংখ্যার নতি (আর্গুমেন্ট)

জটিল সংখ্যার নতি (Argument) হলো সেই কোণ যা জটিল সংখ্যাটি \( x \)-অক্ষের সাথে তৈরি করে। এটিকে \( \theta \) বা \( \arg(z) \) দিয়ে প্রকাশ করা হয় এবং এর একক সাধারণত রেডিয়ানে মাপা হয়।

নতি নির্ণয়ের সূত্র হলো:
\[
\theta = \tan^{-1} \left(\frac{b}{a}\right)
\]

এখানে:

  • \( a \) হলো বাস্তব অংশ।
  • \( b \) হলো কাল্পনিক অংশ।

নতি সাধারণত \( -\pi \) থেকে \( \pi \) এর মধ্যে থাকে, অর্থাৎ \( -180^\circ \) থেকে \( 180^\circ \) পর্যন্ত।

উদাহরণ

যদি \( z = 3 + 4i \) হয়, তবে এর নতি হবে:
\[
\theta = \tan^{-1} \left(\frac{4}{3}\right) \approx 0.93 \text{ রেডিয়ান}
\]


পরমমান ও নতির ব্যবহার

একটি জটিল সংখ্যা \( z = a + bi \) কে তার পরমমান \( |z| \) এবং নতি \( \theta \) এর সাহায্যে ধ্রুবক আকারে (Polar Form) প্রকাশ করা যায়:
\[
z = |z| (\cos \theta + i \sin \theta)
\]
এটি \( z = r \text{cos} \theta \) বা \( z = r e^{i \theta} \) আকারেও লেখা হয়, যেখানে \( r = |z| \) এবং \( \theta = \arg(z) \)।

পরমমান ও নতি ব্যবহার করে জটিল সংখ্যার যোগ, বিয়োগ, গুণ, ভাগ প্রক্রিয়াগুলো সহজে সম্পাদন করা যায়।

# বহুনির্বাচনী প্রশ্ন

Promotion