দ্বিঘাত ফাংশন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK
43
43

দ্বিঘাত ফাংশন (Quadratic Function) হলো এমন একটি ফাংশন, যার ডিগ্রি ২ এবং সাধারণত এটি একটি প্যারাবোলা আকারের গ্রাফ তৈরি করে। দ্বিঘাত ফাংশনের সাধারণ রূপ হলো:

\[
f(x) = ax^2 + bx + c
\]

এখানে \(a\), \(b\), এবং \(c\) হলো ধ্রুবক, যেখানে \(a \neq 0\)।


দ্বিঘাত ফাংশনের বৈশিষ্ট্য

১. ডোমেন: দ্বিঘাত ফাংশনের ডোমেন সব বাস্তব সংখ্যা \( \mathbb{R} \), কারণ এটি যেকোনো রিয়াল ইনপুট গ্রহণ করতে পারে।

২. রেঞ্জ: ফাংশনের গ্রাফ যদি উপরের দিকে খোলা প্যারাবোলা হয় (\( a > 0 \)), তাহলে এর রেঞ্জ হবে \( y \geq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বনিম্ন বিন্দু (vertex)। আবার, যদি প্যারাবোলা নিচের দিকে খোলা হয় (\( a < 0 \)), তাহলে রেঞ্জ হবে \( y \leq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বোচ্চ বিন্দু।

৩. শীর্ষ বিন্দু (Vertex): দ্বিঘাত ফাংশনের শীর্ষ বিন্দু বা ভেরটেক্স হলো প্যারাবোলার সেই বিন্দু, যেখানে এটি সর্বোচ্চ বা সর্বনিম্ন মান ধারণ করে। শীর্ষ বিন্দুটি \( \left( -\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \) দ্বারা নির্ধারিত হয়।

৪. অক্ষীয় প্রতিসাম্য (Axis of Symmetry): দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে থাকে এবং এটি একটি প্রতিসাম্য অক্ষ (axis of symmetry) এর চারপাশে প্রতিসম থাকে। এই অক্ষটি \( x = -\frac{b}{2a} \)।

  1. শূন্যস্থান বা মূল (Roots or Zeros): দ্বিঘাত ফাংশনের মূলগুলো এমন বিন্দু, যেখানে \( f(x) = 0 \)। এদেরকে সমীকরণ \( ax^2 + bx + c = 0 \) সমাধান করে বের করা যায়, যা সাধারণত বর্গমূল সূত্র দ্বারা নির্ধারিত হয়:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]


উদাহরণ

ধরা যাক একটি দ্বিঘাত ফাংশন \( f(x) = x^2 - 4x + 3 \)।

  • ডোমেন: সব বাস্তব সংখ্যা, \( x \in \mathbb{R} \)।
  • রেঞ্জ: \( y \geq -1 \) (কারণ \( a = 1 > 0 \), তাই এটি উপরের দিকে খোলা)।
  • শীর্ষ বিন্দু: \( x = \frac{-(-4)}{2 \cdot 1} = 2 \), এবং \( f(2) = 2^2 - 4 \times 2 + 3 = -1 \), তাই শীর্ষ বিন্দু \( (2, -1) \)।
  • অক্ষীয় প্রতিসাম্য: \( x = 2 \)।
  • মূল: \( x^2 - 4x + 3 = 0 \) সমাধান করলে পাই \( x = 1 \) এবং \( x = 3 \)।

গ্রাফিকাল বৈশিষ্ট্য

দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে হয় এবং এটি \( y \)-অক্ষ বরাবর উভয় দিকে প্রতিসম থাকে। প্যারাবোলার শীর্ষ বিন্দুর উপর নির্ভর করে এটি উপরের দিকে খোলা বা নিচের দিকে খোলা থাকতে পারে।

দ্বিঘাত ফাংশন বাস্তব জীবনের বিভিন্ন চক্রাকার এবং সুনির্দিষ্ট পরিমাপের সমস্যায় ব্যবহৃত হয়, যেমন নিক্ষেপণ গতিবিদ্যা (Projectile Motion), অপটিমাইজেশন, এবং বক্রতা বিশ্লেষণে।

Promotion