প্রবাহীর প্রবাহ

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা - পদার্থবিজ্ঞান – ১ম পত্র | | NCTB BOOK
4

যে সকল পদার্থ প্রবাহিত হয় তাদের প্রবাহী পদার্থ বা ফ্লুয়িড (fluid) বলে। তরল পদার্থ ও গ্যাসকে একত্রে বলা হয় প্ৰবাহী।

চিত্র :৭.৫ ক: ধারারেখ বা শান্ত প্রবাহ। 

 

স্রোতরেখা বা ধারারেখ প্রবাহ ( Streamline flow )

মনে করা যাক, ABC পথ বরাবর কোনো তরল পদার্থ প্রবাহিত হচ্ছে (চিত্র : ৭.১৫ক)। ধরা যাক যে, তরল পদার্থের কোনো কণা v1v2 এবং v3 বেগ নিয়ে যথাক্রমে A, B ও C বিন্দু অতিক্রম করছে। প্রবাহটি যদি ধারারেখ হয় তাহলে কোনো নতুন কণা A বিন্দুতে পৌঁছালে এর বেগ  v1,এর সমান হবে। এ বেগের অভিমুখ হবে A বিন্দুতে অঙ্কিত ABC পথের স্পর্শকের অভিমুখে। কোনো কণা B তে পৌঁছালে এর বেগ হবে  v2 । এই বেগ  v1,  এর সমান হতে পারে আবার  নাও হতে পারে। একইভাবে C বিন্দু অতিক্রমকারী সকল কণার বেগ হবে   v3 ।

  সুতরাং বলা যায় যে, প্রবাহিত হওয়ার সময় তরল পদার্থের সকল কণা যদি একই বেগ নিয়ে এর অগ্রবর্তী কণার পথ অনুসরণ করে তাহলে সে প্রবাহকে ধারারেখ প্রবাহ বা স্রোতরেখা প্রবাহ বা শান্ত প্রবাহ বলে। 

ধারারেখ প্রবাহের বেলায় কোনো নির্দিষ্ট বিন্দু অতিক্রমকারী সকল কণার ঐ বিন্দুতে বেগ একই বা সমান থাকে। কিন্তু কণাগুলোর বেগ এদের পথের বিভিন্ন বিন্দুতে পৃথক হতে পারে আবার নাও হতে পারে। ধারারেখ হলে গতিপথের যেকোনো বিন্দুতে অঙ্কিত স্পর্শক ঐ বিন্দুতে তরলের প্রবাহের অভিমুখ বা দিক নির্দেশ করে। ধারারেখা সরল বা বক্র হতে পারে।

একগুচ্ছ ধারা রেখকে একত্রে প্রবাহ নল বা প্রবাহ বল।

 

বিক্ষিপ্ত প্রবাহ (Turbulent flow )

এটা দেখা গেছে যে, কোনো তরল পদার্থ ধারারেখ প্রবাহে প্রবাহিত হয় যদি এর বেগ ক্রান্তি বেগ নামক একটি সীমান্তিক বেগের চেয়ে কম হয়। কোনো তরল পদার্থের বেগ যদি এর ক্রান্তি বেগের চেয়ে বেশি হয় তাহলে তরল পদার্থের কণার পথ ও বেগ প্রতিনিয়ত এলোমেলোভাবে পরিবর্তিত হয় ফলে কণাগুলো আঁকাবাঁকা পথে প্রবাহিত হয়। এতে প্রবাহী এর সকল নিয়মানুবর্তিতা হারিয়ে ফেলে। এ ধরনের প্রবাহকে বিক্ষিপ্ত বা অনিয়ত বা অশান্ত প্রবাহ বলে (চিত্র: ৭.১৫খ)। এ ধরনের গতিতে যেকোনো বিন্দুতে তরল পদার্থের কণার বেগের মান ও দিক উভয়ই সময়ের সাথে পরিবর্তিত হয়।

চিত্র ৭.১৫খ : বিক্ষিপ্ত বা অশান্ত প্রবাহ

অধ্যাপক অসবর্ন রেনল্ডস (Prof. Osborne Reynolds) সর্বপ্রথম প্রমাণ করেন যে, কোনো তরলের ক্রান্তিবেগ নির্ভর করে তরলের সান্দ্রতাঙ্ক (1). তরলের ঘনত্ব (p) এবং যে নল দিয়ে তরল প্রবাহিত হচ্ছে তার ব্যাসার্ধের (r) উপর। তিনি হিসাব করে দেখান যে,

ক্রান্তিবেগ, vcηρr

এখানে, R = রেনল্ডস-এর সংখ্যা = একটি ধ্রুবক। এই ধ্রুবকের মানের উপর নির্ভর করে তরলের প্রবাহ ধারারেখ প্রবাহ হবে না বিক্ষিপ্ত প্রবাহ হবে। Re <2000 হলে অর্থাৎ রেনল্ডস-এর সংখ্যা 2000-এর কম হলে তরল প্রবাহ ধারা রেখ প্রবাহ হবে। আর Re এর মান 2000 থেকে 3000 এর মধ্যে হলে বুঝতে হবে তরল প্রবাহ ধারারেখ থেকে বিক্ষিপ্ত প্রবাহে রূপান্তরিত হচ্ছে। Re এর মান 3000 এর উপরে হলে প্রবাহ পুরোপুরি বিক্ষিপ্ত প্রবাহে পরিণত হবে।

Content added || updated By

সান্দ্রতা

6

আমরা জানি, যে সকল পদার্থ প্রবাহিত হয় তাদের প্রবাহী পদার্থ বলে। কোনো প্রবাহী প্রবাহিত হওয়ার ক্ষেত্রে কেমন বাধাগ্রস্ত বা রোধী (resistive) তার পরিমাপই হলো ঐ পদার্থের সান্দ্রতা। প্রবাহিত হওয়ার ক্ষেত্রে মধু পানির চেয়ে বেশি রোধী তাই মধু পানির তুলনায় অধিক সান্দ্র । প্রবাহীর সান্দ্রতা দুটি কঠিন পদার্থের মধ্যবর্তী ঘর্ষণের সদৃশ। প্রবাহীর নির্দিষ্ট কোনো আকার নেই। কারণ তাদের আস্তঃআণবিক বল খুবই নগণ্য। কোনো অনুভূমিক তলের উপর দিয়ে প্রবাহিত কোনো প্রবাহীকে কতগুলো স্তরে স্তরে বিভক্ত বলে কল্পনা করলে তল সংলগ্ন স্তরটি তলের সাপেক্ষে স্থির থাকে বাকি স্তরগুলো থাকে গতিশীল। তল থেকে যে স্তরের দূরত্ব যত বেশি সে স্তরের আপেক্ষিক বেগ তত বেশি।

প্রবাহের সময় প্রবাহীর একটি স্তর এর সন্নিহিত স্তরের সাথে ঘর্ষণের সৃষ্টি করে এবং ঐ স্তরের আপেক্ষিক গতিকে বাধা দেয়। তাতে বিভিন্ন স্তর বিভিন্ন বেগে প্রবাহিত হয়। প্রবাহীর এ বিভিন্ন স্তরের ঘর্ষণকেই সান্দ্রতা বলা হয় ।

সংজ্ঞা : যে ধর্মের দরুন কোনো প্রবাহীর বিভিন্ন স্তরের আপেক্ষিক গতিতে বাধার সৃষ্টি হয় তাকে ঐ প্রবাহীর সান্দ্রতা বলে।

 

৭.১৫। ঘর্ষণ ও সান্দ্রতা

Friction and Viscosity 

ঘর্ষণ যেমন দুটি কঠিন পদার্থের আপেক্ষিক গতিকে বাধা দেয়, সান্দ্রতা তেমনি প্রবাহীর দুটি স্তরের আপেক্ষিক গতিতে বাধা দেয় এবং গতি ব্যাহত করতে চেষ্টা করে। সান্দ্রতাকে তাই অন্তস্থ ঘর্ষণও বলা হয়। স্থির প্রবাহীর বেলায় সান্দ্ৰতা বল ক্রিয়া করে না, প্রবাহী গতিশীল হলেই সান্দ্রতা বল ক্রিয়া করে। ঘর্ষণ বল ও সান্দ্রতা বলের মধ্যে পার্থক্য হলো ঘর্ষণ বলের মান স্পর্শতলের ক্ষেত্রফলের উপর নির্ভর করে না, সান্দ্রতা বলের মান প্রবাহীর স্তরদ্বয়ের ক্ষেত্রফলের উপর নির্ভর করে। এ ছাড়াও, সান্দ্রতা বল প্রবাহীর স্তরদ্বয়ের বেগ ও স্থির তল থেকে এর দূরত্বের উপর নির্ভর করে। বিভিন্ন তরলের সান্দ্রতা বিভিন্ন রকম। তেল, দুধ ও আলকাতরার মধ্যে আলকাতরার সান্দ্রতা সবচেয়ে বেশি; আমরা পূর্বেই বলেছি পানির তুলনায় মধুর সান্দ্রতা বেশি । 

 

Content added || updated By

সান্দ্রতা ও সান্দ্রতা গুণাঙ্ক

5

প্রবাহী পদার্থের পাশাপাশি সমান্তরাল দুটি স্তরের আপেক্ষিক গতির দরুন সৃষ্ট ঘর্ষণ বলের জন্য সান্দ্র প্রভাব দেখা দেয় । আমরা জানি, যে ধর্মের ফলে প্রবাহী এর বিভিন্ন স্তরের আপেক্ষিক গতিকে বাধা দেয় তাকে ঐ প্রবাহীর সান্দ্রতা বলে ।

স্তরায়িত প্রবাহে রয়েছে এমন একটি প্রবাহী বিবেচনা করা যাক। এই প্রবাহী পদার্থের এমন দুটি সমান্তরাল স্তর বিবেচনা করা যাক, যাদের প্রত্যেকের ক্ষেত্রফল A এবং এরা পরস্পর থেকে dy দূরত্বে রয়েছে (চিত্র : ৭.১৬)। এই স্তর দুটির বেগ যথাক্রমে v এবং v + dv। তাহলে দূরত্বের সাপেক্ষে বেগের অন্তরক হলো dvdy। একে বেগের নতি (velocity gradient) বলে ।

চিত্র :৭.১৬

প্রবাহী স্তর দুটির মধ্যে বেগের পার্থক্য থাকায় প্রবাহীর সান্দ্রতার জন্য তাদের মধ্যে প্রবাহের বিপরীত দিকে একটি বল ক্রিয়া করে। এ বলের মান সম্পর্কে নিউটন একটি সূত্র দিয়েছেন। এটি সান্দ্রতা সংক্রান্ত নিউটনের সূত্র নামে পরিচিত।

 নিউটনের সূত্র : প্রবাহীর দুটি স্তরের মধ্যে আপেক্ষিক বেগ থাকলে প্রবাহের বিপরীত দিকে যে স্পর্শকীয় সাম্র বল ক্রিয়া করে নির্দিষ্ট তাপমাত্রায় তার মান (F) প্রবাহীর স্তরদ্বয়ের ক্ষেত্রফল (A) এবং তাদের মধ্যকার বেগের নতি dvdy -এর সমানুপাতিক।

অর্থাৎ FAdvdy

এখানে η হলো একটি সমানুপাতিক ধ্রুবক। এর মান প্রবাহীর প্রকৃতি এবং তাপমাত্রার উপর নির্ভর করে। একে নির্দিষ্ট তাপমাত্রায় প্রবাহীর সান্দ্রতা গুণাঙ্ক বা সান্দ্রতা সহগ বলা হয় ।

(7.19) সমীকরণ থেকে দেখা যায় যে, A = 1 একক এবং y = 1 একক হলে

F=  η × 1 × 1

অর্থাৎ   η = F হয়। এ থেকে বলা যায় যে,

সংজ্ঞা : নির্দিষ্ট তাপমাত্রায় প্রবাহীর দুটি স্তরের মধ্যে বেগের নতি একক রাখতে (অর্থাৎ একক দূরত্বে অবস্থিত দুটি স্তরের মধ্যে একক আপেক্ষিক বেগ বজায় রাখতে) প্রবাহী স্তরের প্রতি একক ক্ষেত্রফলে যে স্পর্শকীয় বলের প্রয়োজন হয় তাকে ঐ তাপমাত্রায় ঐ প্রবাহীর সান্দ্রতা গুণাঙ্ক বা সান্দ্রতা সহগ বলে।

সান্দ্রতা সহগ প্রবাহীর সান্দ্রতার পরিমাপ বিশেষ। কোনো প্রবাহীর সান্দ্রতা সহগ বলতে প্রবাহীটি যে সান্দ্র প্রভাব প্রদর্শন করে তার পরিমাপকে বোঝায়। সান্দ্রতা সহগ যত বেশি প্রবাহীটি তত সান্দ্র কক্ষ তাপমাত্রায় গ্লিসারিনের সান্দ্রতা সহগ পানির চেয়ে 103 গুণ বেশি। নিউটনের সূত্র তথা (7.19) সমীকরণ সকল গ্যাসের জন্য এবং অনেক তরলের জন্য খাটে। যে সব তরলের জন্য এই সূত্র খাটে তাদের বলা হয় নিউটনীয় তরল। পানি একটি নিউটনীয় তরল। অ-নিউটনীয় তরলের

জন্য η এর কোনো ধ্রুব মান নেই। প্রকৃতপক্ষে, এসব তরলের সান্দ্রতা সহগ নেই। এরকম একটি তরল হলো তেল রং (oil paint) । 

η  মাত্রা ও একক

(7.19) সমীকরণ থেকে দেখা যায়,

η=FAdvdy

বা,  η = বল/ক্ষেত্রফল Xবেগ/দূরত্ব 

সুতরাং  η এর মাত্রা হবে উপরিউক্ত সমীকরণের ডানপাশের রাশিগুলোর মাত্রা অর্থাৎ

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>η</mi></mfenced><mo>=</mo><mfrac><mrow><mi>M</mi><mi>L</mi><msup><mi>T</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow><mrow><msup><mi>L</mi><mn>2</mn></msup><mfrac><mrow><mi>L</mi><msup><mi>T</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mi>L</mi></mfrac></mrow></mfrac><mo>=</mo><mi>M</mi><msup><mi>L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>T</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>

(7.19) সমীকরণ থেকে পুনরায় পাওয়া যায়,

η=FAdvdy

এই সমীকরণের ডানপাশের রাশিগুলোর একক বসালে  η এর এস আই একক পাওয়া যায় । এ একক হলো

Nm2ms-1m

অর্থাৎ N sm -2 বা, Pas

বিজ্ঞানী পয়সুলীর নামানুসারে সান্দ্রতাঙ্কের আর একটি একক হচ্ছে পয়েস (poise) 1 N s m-2 = 10 poise

তাৎপর্য :

  পানির সান্দ্রতা সহগ 103 N s m-2 বলতে বোঝায় 1 m-2 ক্ষেত্রফলবিশিষ্ট পানির দুটি স্তর পরস্পর থেকে 1m দূরত্বে অবস্থিত হলে এদের ভেতর 1 ms-1 আপেক্ষিক বেগ বজায় রাখতে 10-3 N বলের প্রয়োজন হয়।

Content added || updated By
Promotion