পৃথিবীর ব্যাসার্ধ 6400 km পৃথিবীর পৃষ্ঠ হতে 6400 km উচ্চতায় g = ?

Created: 2 years ago | Updated: 11 months ago
Updated: 11 months ago

মনে করি পৃথিবীর ভর = M, ব্যাসার্ধ = R এবং ভূ-পৃষ্ঠে অবস্থিত কোন বস্তুর ভর = m [চিত্র ৭.৯]। উক্ত বস্তুকে পৃথিবী যে বল দ্বারা আকর্ষণ করে তার মান,

  F=GMmR2       (21)
পর্যবেক্ষণ স্থানে অভিকর্ষজ ত্বরণের মান g হলে বস্তুর ওজন,
W=F=mg   (22)
এখন সমীকরণ (21) ও (22) হতে পাই,
 mg=GMmR2        
বা,  g=GMR2

বা, M=gR2G (23)  
 

চিত্র : ৭.৯


সমীকরণ (23)-এ, g = 9.8 ms-2, R = 6.37 × 106 m, G = 6.673 x 10-11 Nm-2kg-2 বসিয়ে,

M=9.8×(6.37×106)26.673×10-11 

   =5.96×1024kg

ঘনত্ব : 

মনে করি পৃথিবীর গড় ঘনত্ব = ρ

ρ=ভর/আয়তন =MV=M4π3R3 

=gR2G×34πR3=3g4πGR
 =3×9.84×3.14×6.673×10-11×6.37×106

=5.5 x 103 kg m-3|

 

৭.৯ ভর এবং ওজন 

Mass and weight
 

ভর : কোন একটি বস্তুতে মোট যে পরিমাণ পদার্থ আছে, তাকে তার ভর বলে। 

একে সাধারণত ‘M’ বা 'm' দ্বারা প্রকাশ করা হয়। এটি একটি স্কেলার রাশি। বস্তুর ভর স্থান নিরপেক্ষ অর্থাৎ যে কোন স্থানে নেয়া হোক না কেন এর মান সর্বত্র স্থির থাকবে। বস্তুর ভর তার স্থিতি, গতি, তাপমাত্রা, চুম্বকত্ব বা তড়িতাবস্থা দ্বারা প্রভাবিত হয় না। সেজন্য ভর বস্তুর একটি স্বাভাবিক ধর্ম। এক্ষেত্রে উল্লেখ করা যেতে পারে যে কোন বস্তুর বেগ যদি আলোর বেগের কাছাকাছি হয় তা হলে বস্তুর ভরের পরিবর্তন দেখা যায়। বেগের সঙ্গে বস্তুর ভর পরিবর্তনের তত্ত্ব আইনস্টাইন (Einstein)-এর আপেক্ষিক তত্ত্বে (Theory of relativity) বিশদভাবে আলোচিত হয়েছে।
 

ওজন : কোন একটি বস্তু যে পরিমাণ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৃষ্ট হয় তাকে তার ওজন বা ভার বলে। 

একে W দ্বারা প্রকাশ করা হয়। যেহেতু ওজন একটি বল ছাড়া আর কিছুই নয়, সুতরাং এটি একটি ভেক্টর রাশি এবং এর মান, w = ভর × অভিকর্ষজ ত্বরণ
বা, W = mg   (25)


বিভিন্ন স্থানে g-এর মান বিভিন্ন বলে স্থানভেদে বস্তুর ওজন পরিবর্তিত হয়। অতএব বস্তুর ওজন স্থান নিরপেক্ষ নয়। এই প্রসংগে আরও বলা যায় যে, বস্তুর ওজন তার একটি মৌলিক বৈশিষ্ট্য নয়। বস্তুর ওজন থাকতে পারে, নাও থাকতে পারে। যেমন পৃথিবীর কেন্দ্রে বস্তুর কোন ওজন নেই।


৭.১০ বস্তুর ওজনের তারতম্য 

Variation of weight of a body


আমরা জানি, ওজন W = mg ;

 এখানে m = বস্তুর ভর এবং g =অভিকর্ষজ ত্বরণ। 

বস্তুর ভর একটি ধ্রুব রাশি; সুতরাং কোন বস্তুর ওজন অভিকর্ষজ ত্বরণের উপর নির্ভরশীল। যে স্থানে অভিকর্ষজ ত্বরণ বেশি, সে স্থানে বস্তুর ওজনও বেশি। আর অভিকর্ষজ ত্বরণ যে স্থানে কম বস্তুর ওজনও সে স্থানে কম। উদাহরণস্বরূপ বলা যায়, মেরু অঞ্চলে অভিকর্ষজ ত্বরণ বেশি। সুতরাং মেরু অঞ্চলে বস্তুর ওজন বেশি। বিষুব অঞ্চলে অভিকর্ষজ ত্বরণ কম। অতএব বিষুব অঞ্চলে বস্তুর ওজনও কম। পৃথিবীর কেন্দ্রে অভিকর্ষজ ত্বরণ শূন্য। অতএব পৃথিবীর কেন্দ্রে বস্তুর কোন ওজন নেই।


৭.১১ মহাকর্ষীয় ধ্রুবক এবং অভিকর্ষজ ত্বরণের মধ্যে পার্থক্য
Distinction between gravitational constant and acceleration due to gravity


মহাকর্ষীয় ধ্রুবক এবং অভিকর্ষজ ত্বরণের মধ্যে নিম্নলিখিত পার্থক্য আছে ঃ

মহাকর্ষীয় ধ্রুবকঅভিকর্ষজ ত্বরণ
১। একক ভরবিশিষ্ট দুটি বস্তুর মধ্যবর্তী দূরত্ব এক একক হলে তাদেঁর পারস্পরিক আকর্ষণ বলকে মহাকর্ষীয় ধ্রুবক বলে।১। অভিকর্ষ বলের জন্য বস্তুতে যে ত্বরণ সৃষ্টি হয় তাকে অভিকর্ষজ ত্বরণ বলে।
২। এর মাত্রা সমীকরণ M-1T-2L-3২। এর মাত্রা সমীকরণ LT-2
৩। একটি বিশ্বজনীন ধ্রুবক ।৩। এটি একটি পরিবর্তনশীল রাশি।
৪। এস. আই. পদ্ধতিতে এর মান 6.657 x 10-11 Nm2kg-2৪। এস.আই.পদ্ধতিতে এর মান ভূ-পৃষ্ঠে 9.81 ms-2
৫। এর মান বস্তুর ভরের উপর বা ভূ-কেন্দ্র হতে বস্তুর দূরত্বের উপর নির্ভর করে  ৫। এর মান বস্তুর ভরের উপর নির্ভর করে না, কিন্তু দূরত্বের উপর নির্ভর করে না ।
৬। এটি একটি স্কেলার রাশি।৬। এটি একটি ভেক্টর রাশি

 

Content added || updated By
Promotion