Academy

a tanθ + b secθ = c সমীকরণের মূলদ্বয় α,β হলে, প্রমাণ কর যে, tan (α+β) = 2caa2-c2

Created: 1 year ago | Updated: 7 months ago
Updated: 7 months ago

a tanθ +b secθ =c a tanθ-c =-bsecθ

a2 tan2θ + c2 -2ca tanθ = b2 + b2 tan2θ

a2-b2 tan2θ - 2ca tanθ + c2-b2=0

tanα + tanβ =2caa2-b2; tanα tanβ=c2-b2a2-b2

L.H.S= tan (α +β)=tanα + tanβ1- tanα tanβ= 2caa2-b21-c2-b2a2-b2

=2caa2-b2-c2+b2= 2caa2-c2=R.H.S (Proved) 

1 year ago

উচ্চতর গণিত

Please, contribute to add content.
Content
Promotion