সমীকরণের জ্যামিতিক রূপ কোনটি?
যদি দুটি বৃত্তের সাধারণ জ্যা (common chord) এর সমীকরণ নির্ণয় করতে হয়, তাহলে প্রথমে দুটি বৃত্তের সমীকরণ লিখতে হবে এবং তারপর তাদের মধ্যে পার্থক্য করে সমীকরণ বের করতে হবে।
ধরা যাক, দুটি বৃত্তের সমীকরণ নিম্নরূপ:
প্রথম বৃত্তের সমীকরণ:
\[
(x - h_1)^2 + (y - k_1)^2 = r_1^2
\]
দ্বিতীয় বৃত্তের সমীকরণ:
\[
(x - h_2)^2 + (y - k_2)^2 = r_2^2
\]
এখানে:
সাধারণ জ্যা হলো সেই সরলরেখা, যা দুটি বৃত্তের ছেদ বিন্দুগুলির মধ্য দিয়ে যায়। এই সাধারণ জ্যার সমীকরণ পেতে, আমরা দুটি বৃত্তের সমীকরণ থেকে একটিকে অন্যটির সাথে বিয়োগ করবো।
বিয়োগ করলে পাই:
\[
[(x - h_1)^2 + (y - k_1)^2] - [(x - h_2)^2 + (y - k_2)^2] = r_1^2 - r_2^2
\]
সরলীকরণ করলে:
\[
2x(h_2 - h_1) + 2y(k_2 - k_1) = r_1^2 - r_2^2 + h_1^2 - h_2^2 + k_1^2 - k_2^2
\]
এটিকে আরও সংক্ষিপ্ত আকারে লিখলে:
\[
x(h_2 - h_1) + y(k_2 - k_1) = \frac{r_1^2 - r_2^2 + h_1^2 - h_2^2 + k_1^2 - k_2^2}{2}
\]
এই সমীকরণটি হলো দুইটি বৃত্তের সাধারণ জ্যা বা common chord এর সমীকরণ।