নিউটনের গতির সূত্র অনুসারে বস্তুর উপর বল প্রয়োগ করলে ত্বরণ সৃষ্টি হয়। অভিকর্ষও একটি বল। এই বল কোন একটি বস্তুর উপর ক্রিয়া করে ত্বরণ সৃষ্টি করবে। অতএব, বস্তুতে অভিকর্ষ বল কর্তৃক যে ত্বরণ উৎপন্ন হয় তাকে অভিকর্ষজ ত্বরণ বলে। অথবা কোন স্থানে অভিকর্ষের টানে মুক্তভাবে পড়ন্ত বস্তুর বেগ যে হারে বৃদ্ধি পায় তাকে ঐ স্থানের অভিকর্ষজ বা অভিকর্ষীয় ত্বরণ বলে। একে 'g' দ্বারা প্রকাশ করা হয়।
পরীক্ষার সাহায্যে জানা গেছে, বাধাহীন পথে ও একই স্থান হতে সকল বস্তু সমত্বরণে পৃথিবীর কেন্দ্রের দিকে পতিত হয়। স্থানভেদে এই ত্বরণের মান বিভিন্ন। সুতরাং অভিকর্ষজ ত্বরণ বস্তু নিরপেক্ষ, স্থান নিরপেক্ষ নয়।
এর একক এম. কে. এস. ও আন্তর্জাতিক SI পদ্ধতিতে মিটার/সে.২। এর মাত্রা সমীকরণ [LT-2]।
মনে করি ‘m’ ভরবিশিষ্ট একটি বস্তুকণা পৃথিবী পৃষ্ঠে অবস্থিত এবং পৃথিবী একটি গোলাকার বস্তু [চিত্র ৭.৪ ]। যদি পৃথিবীর ভর ‘M' এবং ব্যাসার্ধ 'R' হয়, তবে নিউটনের মহাকর্ষ সূত্র হতে আমরা পাই,
পুনরায়, নিউটনের গতির দ্বিতীয় সূত্র হতে আমরা পাই,
বল = ভর x ত্বরণ
অভিকর্ষীয় বল = বস্তুর ভর × অভিকর্ষজ ত্বরণ। অর্থাৎ,
সমীকরণ (8) এবং সমীকরণ (9) হতে আমরা পাই,
বা,
এটিই হল ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের সমীকরণ। সমীকরণ অনুসারে অভিকর্ষজ ত্বরণ ৪ বস্তুর ভর m-এর
উপর নির্ভর করে না। আবার, আমরা জানি G এবং M ধ্রুব রাশি। অতএব ভূ-পৃষ্ঠের কোন স্থানে ‘g ’-এর মান ভূ-কেন্দ্র হতে ঐ স্থানের দূরত্বের উপর নির্ভর করে। এটি হতে এই সিদ্ধান্তে উপনীত হওয়া যায় যে, ভূ-পৃষ্ঠের কোন একটি স্থানে g-এর মান নির্দিষ্ট, কিন্তু স্থানভেদে এর পরিবর্তন ঘটে।
পৃথিবীর ভর M= 5.983 × 1024 kg এবং ব্যাসার্ধ R = 6.36 x 106m ধরে উপরের সমীকরণ অনুসারে ভূ-পৃষ্ঠের g-এর মান হয়,
অভিকর্ষজ ত্বরণ ধ্রুব নয়। তিনটি কারণে এর তারতম্য ঘটে :
পৃথিবীর কেন্দ্র হতে কোন স্থানের দূরত্বের তারতম্য ভেদে অভিকর্ষজ ত্বরণ 'g'-এর মানের পরিবর্তন ঘটে। এটি আলোচনা করতে হলে তিনটি বিষয় আলোচনা করতে হয়; যথা—
কোন বস্তু যদি ‘M’ ভর এবং ‘R’ ব্যাসার্ধবিশিষ্ট পৃথিবী পৃষ্ঠে অবস্থান করে [ চিত্র ৭.৫ ] তবে ঐ বস্তুর উপর তথা ভূ-পৃষ্ঠে,
এখানে, p = পৃথিবীর উপাদানের গড় ঘনত্ব ও = পৃথিবীর আয়তন ।
মনে করি M পৃথিবীর ভর এবং R তার ব্যাসার্ধ। যদি বস্তু পৃথিবী পৃষ্ঠ হতে h উচ্চতায় উপরে অবস্থান করে। [চিত্র ৭.৬] তবে ঐ বস্তুর উপর তথা ভূ-পৃষ্ঠ হতে h উচ্চতায় অভিকর্ষীয় ত্বরণ,
সমীকরণ (11) অপেক্ষা সমীকরণ (13)-এ হরের মান বেশি। কাজেই ভাগফল অর্থাৎ অভিকর্ষীয় ত্বরণ-এর মান কম হবে। অতএব পৃথিবী পৃষ্ঠ অপেক্ষা উপরে অভিকর্ষীয় ত্বরণ-এর মান কম হবে এবং দূরত্বের বর্গের ব্যস্তানুপাতে পরিবর্তিত হবে। সুতরাং দূরত্ব বাড়লে অভিকর্ষীয় ত্বরণ-এর মান কমবে এবং দূরত্ব কমলে অভিকর্ষীয় ত্বরণ-এর মান বাড়বে। এই কারণে পাহাড়ের উপর অভিকর্ষীয় ত্বরণ-এর মান পৃথিবী পৃষ্ঠে অভিকর্ষীয় ত্বরণ-এর মান অপেক্ষা কম হয়।
সমীকরণ (13)-কে সমীকরণ (10) দ্বারা ভাগ করে পাওয়া যায়,
হলে,
বা,
অর্থাৎ,
মনে করি পৃথিবী পৃষ্ঠ হতে h দূরত্ব নিচে B বিন্দুতে কোন বস্তু আছে এবং ঐ স্থানে অভিকর্ষীয় ত্বরণ gd [চিত্র ৭.৭]। B বিন্দুতে অবস্থিত যে কোন বস্তুর উপর ভূ-কেন্দ্র O-এর দিকে পৃথিবীর আকর্ষণ (R-h) ব্যাসার্ধবিশিষ্ট AB গোলকের আকর্ষণের সমান। এই গোলকের বাইরের অংশ বস্তুর উপর কার্যকর কোন আকর্ষণ প্রয়োগ করে না।
এখন AB গোলকের আয়তন
AB গোলকের ভর M´ ধরলে,
M = আয়তন × ঘনত্ব
বা, (15)
(16)
এখানে, একটি ধ্রুব রাশি।
উপরের সমীকরণ অনুসারে h-এর মান যত বাড়বে, (R-h )-এর মান তত কমবে। অতএব, যত পৃথিবীর ভেতরের দিক যাওয়া যাবে, অভিকর্ষীয় ত্বরণ-এর মান ততই কমবে অর্থাৎ ভূ-গর্ভে অভিকর্ষীয় ত্বরণ ভূ-কেন্দ্র হতে দূরত্বের সমানুপাতিক। এভাবে যেতে যেতে যদি ভূ-কেন্দ্রে পৌঁছা যায় তবে h-এর মান R-এর সমান হবে।
অতএব ভূ-কেন্দ্রে, gd = k (R - R)
বা, gd = 0
(i) সমীকরণ (11) হতে সরাসরি সমীকরণ (15) পাওয়া যায়।
(ii) সমীকরণ (15)-কে সমীকরণ (12) দ্বারা ভাগ করে পাওয়া যায়
অর্থাৎ, gd < g
আমরা জানি পৃথিবী সম্পূর্ণ গোলাকার নয় ৷ এর আকৃতি উপগোলকীয় (spheroidal)। উত্তর ও দক্ষিণ মেরু কিছুটা চাপা এবং বিষুব-ব্যাস মেরু-ব্যাস অপেক্ষা প্রায় 43 km বৃহত্তর। সুতরাং বিষুব রেখায় অবস্থিত কোন বস্তু মেরু অঞ্চলে অবস্থিত বস্তু অপেক্ষা পৃথিবীর কেন্দ্র হতে অধিক দূরে অবস্থিত। অতএব বিষুব রেখায় অবস্থিত কোন বস্তুর উপর অভিকর্ষীয় আকর্ষণ বল মেরুতে অবস্থিত ঐ বস্তুর উপর অভিকর্ষীয় আকর্ষণ বল অপেক্ষা কম। সুতরাং বিষুব রেখায় 'g'-এর মান কম এবং মেরু অঞ্চলে 'g'-এর মান বেশি।
পৃথিবীর আহ্নিক বা দৈনিক গতির সাথে সাথে ভূ-পৃষ্ঠের যে কোন একটি বস্তু পৃথিবীর সাথে তার অক্ষের চর্তুদিকে সমান কৌণিক বেগে প্রদক্ষিণ করবে। এতে বস্তুটির উপর একটি কেন্দ্রমুখী বল প্রযুক্ত হবে এবং বস্তুটি তার বৃত্তাকার পথের ব্যাসার্ধ বরাবর ছিটকে বাইরের দিকে চলে যাবার চেষ্টা করবে। বস্তুর ওজনের কিছু অংশ এই কেন্দ্রবিমুখী বল প্রশমিত করতে ব্যয় হবে। ফলে অভিকর্ষীয় ত্বরণ ‘8' হ্রাস পাবে। আবার মেরু অঞ্চল অপেক্ষা বিষুব অঞ্চলে বস্তু অপেক্ষাকৃত বড় ব্যাসার্ধের বৃত্তাকার পথে ঘুরবে বলে কেন্দ্রবিমুখী বলও বৃদ্ধি পাবে। কাজেই g-এর মান মেরু অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম হবে।
ধরা যাক m ভরের একটি বস্তু ভূ-পৃষ্ঠে (উত্তর) অক্ষাংশে P বিন্দুতে অবস্থান করে পৃথিবীর ঘূর্ণনে তার অক্ষ NS-এর চতুর্দিকে সমকৌণিক বেগে r ব্যাসার্ধবিশিষ্ট বৃত্তাকার পথে ঘুরছে [চিত্র : ৭.৮]। তা হলে বস্তুটির উপর তার বৃত্তাকার পথের স্পর্শক PT বরাবর সৃষ্ট কেন্দ্রবিমুখী বল,
PO বা ভূ-কেন্দ্র বরাবর বস্তুটির উপর পৃথিবীর আকর্ষণ,
OPD - বরাবর বা ভূ-কেন্দ্র হতে বাইরের দিকে কেন্দ্রবিমুখী বলের অংশক
T cosλ = m2r cos λ = m2 R cos2λ
বল দুটির লব্ধি,
(19)
P বিন্দুতে ভূ-কেন্দ্র অভিমুখে অভিকর্ষজ ত্বরণ হলে,
(20)
বিষুব অঞ্চলে,
আবার মেরু অঞ্চলে,
কাজেই, g-এর মান মের অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম হবে।
(১) পৃথিবীর পৃষ্ঠ হতে উপর দিকে উঠলে এর মান কমে।
(২) পৃথিবীর অভ্যন্তরে নামলে এর মান কমে।
(৩) বিষুবীয় অঞ্চল হতে মেরু অঞ্চলে অগ্রসর হলে এর মান বাড়ে।
(৪) ঘূর্ণনজনিত কারণে মেরু অঞ্চলে এর মান অল্প কমে, কিন্তু বিষুবীয় অঞ্চলে বেশি কমে।
(৫) মেরুতে g-এর মান = 9.832 ms-2 ; বিষুব অঞ্চলে g-এর মান = 9.780 ms-2 |
ঢাকায় g-এর মান = 9.7835 ms-2 ; রাজশাহীতে g-এর মান = 9.790 ms-2 |
(৬) ভূ-পৃষ্ঠে g-এর মান বিভিন্ন স্থানে বিভিন্ন বলে সমুদ্র পৃষ্ঠে এবং 45° অক্ষাংশের g-এর মানকে আদর্শ মান ধরা হয়। g-এর আদর্শ বা ব্যবহারিক মান = 9.81 ms-2।
(৭) g-এর মান জেনে পৃথিবীর গড় ঘনত্ব সম্বন্ধে একটি ধারণা লাভ করা যায়।
Read more