জটিল সংখ্যার কিছু গুরুত্বপূর্ণ ধর্ম নিচে দেওয়া হলো:
একটি জটিল সংখ্যা \( z = a + bi \) এর কনজুগেট \( \overline{z} = a - bi \)। তাদের মডুলাস একই হবে: \( |z| = |\overline{z}| \)। এছাড়া \( z \cdot \overline{z} = |z|^2 \)।
জটিল সংখ্যার উল্ট সংখ্যা (Reciprocal) পেতে হলে কনজুগেট ব্যবহার করা হয়। \( z = a + bi \) এর উল্ট সংখ্যা \( \frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a - bi}{a^2 + b^2} \)।
জটিল সংখ্যার এই ধর্মগুলো জটিল সংখ্যা বিশ্লেষণে বিশেষভাবে ব্যবহৃত হয়, যা ইলেকট্রনিক্স, সংকেত প্রক্রিয়াকরণ এবং অন্যান্য গণিতের ক্ষেত্রগুলোতে গুরুত্বপূর্ণ।
আরও দেখুন...