সূচক ফাংশন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | NCTB BOOK

সূচক ফাংশন (Exponential Function) এমন একটি ফাংশন, যেখানে ভেরিয়েবলটি সূচকে বা ঘাতে থাকে। এটি সাধারণত নিম্নোক্ত আকারে প্রকাশ করা হয়:

\[
f(x) = a \cdot b^x
\]

এখানে:

  • \( a \) হলো ধ্রুবক (যা \( 0 \neq a \)) এবং এটি ফাংশনের প্রাথমিক মান নির্দেশ করে।
  • \( b \) হলো বেস বা ভিত্তি (এবং \( b > 0 \) এবং \( b \neq 1 \)) যা সূচকে ব্যবহৃত হয়।
  • \( x \) হলো ভেরিয়েবল বা সূচক।

সূচক ফাংশনের বৈশিষ্ট্য

১. ডোমেন: সূচক ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: সূচক ফাংশনের রেঞ্জ \( y > 0 \), অর্থাৎ সব ধনাত্মক বাস্তব সংখ্যা।

৩. ক্ষয় ও বৃদ্ধির ধরন:

  • যদি \( b > 1 \) হয়, তাহলে ফাংশনটি ধনাত্মক গতিতে বৃদ্ধি পায় (Exponential Growth)।
  • যদি \( 0 < b < 1 \) হয়, তাহলে ফাংশনটি ক্রমাগত ক্ষয় পায় (Exponential Decay)।

৪. অক্ষীয় ছেদ বিন্দু: যখন \( x = 0 \), তখন \( f(x) = a \cdot b^0 = a \cdot 1 = a \)। অর্থাৎ, সূচক ফাংশনের গ্রাফ সবসময় \( y \)-অক্ষকে \( (0, a) \) বিন্দুতে অতিক্রম করে।

৫. আসমানটোট: সূচক ফাংশনের একটি আসমানটোট থাকে, যা \( y = 0 \) রেখার সমান্তরাল এবং এই রেখাকে ফাংশনের মান স্পর্শ করে না।


উদাহরণ

১. যদি \( f(x) = 2^x \) হয়, তবে এটি একটি বৃদ্ধি ফাংশন (Exponential Growth), কারণ \( b = 2 > 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

২. যদি \( f(x) = 0.5^x \) হয়, তবে এটি একটি ক্ষয় ফাংশন (Exponential Decay), কারণ \( 0 < b = 0.5 < 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

সূচক ফাংশনের ব্যবহার

সূচক ফাংশন বাস্তব জীবনের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • বৃদ্ধি: জনসংখ্যা বৃদ্ধি, ব্যাঙ্কে সুদের হিসাব, এবং বিনিয়োগের বৃদ্ধি।
  • ক্ষয়: তেজস্ক্রিয় ক্ষয়, ঔষধের ক্ষয়, এবং তাপীয় ক্ষয়।
  • গণনা: কম্পিউটারে লজিক্যাল অপারেশন এবং সংকেত বিশ্লেষণেও সূচক ফাংশন ব্যবহার করা হয়।

সূচক ফাংশনের মাধ্যমে বিভিন্ন পরিবর্তনশীল গাণিতিক সমস্যা এবং চক্রাকার ঘটনাগুলোকে বিশ্লেষণ করা সহজ হয়।

আরও দেখুন...

Promotion

Promotion