3d2xdt2+27x=0  সমীকরণটি একটি সরল ছন্দিত স্পন্দন বর্ণনা করে। এই স্পন্দনের কৌণিক কম্পাংক কত?

Created: 2 years ago | Updated: 2 years ago
Updated: 2 years ago

কোনো ঘটনা, কোনো রাশি বা কোনো অপেক্ষকের (function) বা কোনো কিছুর যদি বার বার পুনরাবৃত্তি ঘটে তবে তাকে আমরা বলি পর্যাবৃত্তিক ঘটনা বা রাশি বা অপেক্ষক। যেমন, প্রতি বছর ২৬ মার্চ আমরা স্বাধীনতা দিবস পালন করি, প্রতি বছর ১ বৈশাখ আমাদের বাংলা নববর্ষ। প্রতি সপ্তাহে শুক্রবার সরকারি ছুটি থাকে, ঘড়ির একটা কাঁটা নির্দিষ্ট সময় পরপর একটি নির্দিষ্ট দাগ অতিক্রম করে, সাইন (sine) বা কোসাইন (cosine) ফাংশনগুলো 360° পরপর একই মান গ্রহণ করে। পর্যাবৃত্তি দু'রকমের হতে পারে স্থানিক পর্যাবৃত্তি এবং কালিক পর্যাবৃত্তি।

স্থানিক পর্যাবৃত্তি (Spatial periodicity)

সংজ্ঞা : কোনো বস্তুর গতি যদি এমনভাবে পুনরাবৃত্তি হয় যে নির্দিষ্ট সময় পরপর কোনো নির্দিষ্ট বিন্দুকে একই দিক থেকে অতিক্রম করে তবে তাকে বলে স্থানিক পর্যাবৃত্তি। ঘড়ির কোনো কাঁটার গতি, সূর্যের চারপাশে গ্রহগুলোর গতি, একটি উল্লম্ব স্প্রিং এর তরঙ্গের উপরিস্থ কোনো কণার গতি ইত্যাদি স্থানিক পর্যাবৃত্তির উদাহরণ ।

কালিক পর্যাবৃত্তি (Temporal periodicity)

সংজ্ঞা : কোনো রাশি বা ফাংশনের মান যদি এমন হয় যে নির্দিষ্ট সময় পরপর সেটি একই মান গ্রহণ করে যেমন, ১৬ ডিসেম্বর আমাদের জাতীয় বিজয় দিবস, প্রতি এক বছর পর পর এর পুনরাবৃত্তি ঘটে; আমরা বাড়িঘরে যে তবে তাকে বলে কালিক পর্যাবৃত্তি।

তড়িৎ প্রবাহ ব্যবহার করি সেটি হচ্ছে পর্যাবৃত্ত বা দিক পরিবর্তী প্রবাহ (alternating current বা AC)। এ প্রবাহ আমাদের দেশে প্রতি 0.02s পরপর একই মান গ্রহণ করে। এ অধ্যায়ে এবং এ বই-এর অন্যত্র অন্যভাবে উল্লেখ না করলে পর্যাবৃত্তি বলতেই আমরা স্থানিক পর্যাবৃত্তিকে বোঝাবো।

Content added By
Promotion