ত্রিকোণমিতিক ফাংশন (Trigonometric Functions) হলো এমন ধরনের ফাংশন, যা কোণ এবং তার সম্পর্কিত অনুপাত নিয়ে কাজ করে। ত্রিকোণমিতিক ফাংশনগুলো মূলত ডান-কোণযুক্ত ত্রিভুজের বাহুগুলোর অনুপাতের উপর ভিত্তি করে তৈরি হয়। প্রধান ত্রিকোণমিতিক ফাংশনগুলো হলো সাইন (sin), কোসাইন (cos), এবং **ট্যানজেন্ট (tan)**। এদের সঙ্গে সম্পর্কিত অন্যান্য ফাংশনগুলো হলো কোট্যানজেন্ট (cot), সেক্যান্ট (sec), এবং **কোসেক্যান্ট (csc)**।
১. সাইন (sin): \( \sin(\theta) \) হলো ডান-কোণযুক্ত ত্রিভুজের বিপরীত বাহু (opposite side) এবং অতিভুজ (hypotenuse) এর অনুপাত।
\[
\sin(\theta) = \frac{\text{বিপরীত বাহু}}{\text{অতিভুজ}}
\]
২. কোসাইন (cos): \( \cos(\theta) \) হলো সংলগ্ন বাহু (adjacent side) এবং অতিভুজের অনুপাত।
\[
\cos(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{অতিভুজ}}
\]
৪. কোট্যানজেন্ট (cot): \( \cot(\theta) \) হলো সংলগ্ন বাহু এবং বিপরীত বাহুর অনুপাত, যা \( \tan(\theta) \)-এর বিপরীত।
\[
\cot(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{বিপরীত বাহু}} = \frac{1}{\tan(\theta)}
\]
৫. সেক্যান্ট (sec): \( \sec(\theta) \) হলো অতিভুজ এবং সংলগ্ন বাহুর অনুপাত, যা \( \cos(\theta) \)-এর বিপরীত।
\[
\sec(\theta) = \frac{\text{অতিভুজ}}{\text{সংলগ্ন বাহু}} = \frac{1}{\cos(\theta)}
\]
৬. কোসেক্যান্ট (csc): \( \csc(\theta) \) হলো অতিভুজ এবং বিপরীত বাহুর অনুপাত, যা \( \sin(\theta) \)-এর বিপরীত।
\[
\csc(\theta) = \frac{\text{অতিভুজ}}{\text{বিপরীত বাহু}} = \frac{1}{\sin(\theta)}
\]
ত্রিকোণমিতিক ফাংশন বাস্তব জীবনের অনেক ক্ষেত্রে ব্যবহৃত হয়, যেমন:
ত্রিকোণমিতিক ফাংশন তাই গণিতে এবং বিজ্ঞানের নানা ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ এবং কার্যকরী।
আরও দেখুন...