সমতুল সেট(Equivalent set)

নবম-দশম শ্রেণি (দাখিল) - উচ্চতর গণিত - সেট ও ফাংশন | NCTB BOOK

ধরি, A = {1,2,3} এবং B = {a, b, c} দুইটি সেট। নিচের চিত্রে A ও B সেটদ্বয়ের মধ্যে একটি এক-এক মিল স্থাপন করে দেখানো হলো:

সংজ্ঞা ২ (সমতুল সেট). যেকোনো সেট A ও B এর মধ্যে যদি একটি এক-এক মিল AB বর্ণনা করা যায়, তবে A ও B কে সমতুল সেট বলা হয়। A ও B কে সমতুল বোঝাতে A~B লেখা হয়। A~B হলে, এদের যেকোনো একটিকে অপরটির সাথে সমতুল বলা হয়। লক্ষণীয় যে, যেকোনো সেট A, B ও C এর জন্য

ক) A~A

খ) A~B হলে B~A

গ) A~B এবং B~C হলে A~C

 

উদাহরণ ১২. দেখাও যে, A={1, 2, 3, · · ·, n} এবং B={1, 3, 5, · · ·, 2n – 1} সেটদ্বয় সমতুল, যেখানে n একটি স্বাভাবিক সংখ্যা।

সমাধান: A ও B সমতুল, কারণ সেট দুইটির মধ্যে নিচের মতো একটি এক-এক মিল রয়েছে।

মন্তব্য: উপরে চিত্রিত এক-এক মিলটিকে  AB:k2k-1, kA দ্বারা বর্ণনা করা যায়।

উদাহরণ ১৪. দেখাও যে, স্বাভাবিক সংখ্যার সেট N এবং জোড় সংখ্যার সেট A = {2, 4, 6, 2n, · } সমতুল।

সমাধান: N = {1, 2, 3, , n, . . . } ও A সমতুল সেট, কারণ N এবং A এর মধ্যে নিচের চিত্রের মতো একটি এক-এক মিল রয়েছে।

মন্তব্য: উপরে চিত্রিত এক-এক মিলটিকে NA:n2n,nN দ্বারা বর্ণনা করা যায়। 

দ্রষ্টব্য: ফাঁকা সেট কে নিজের সমতুল ধরা হয়। অর্থাৎ, ~

প্রতিজ্ঞা 8. প্রত্যেক সেট A তার নিজের সমতুল। অর্থাৎ, A~A

প্রমাণ: A= হলে, A~A ধরা হয়। আর A হলে প্রত্যেক সদস্য এর সঙ্গে তার নিজেকে মিল করে এক-এক মিল AA:xx,xA স্থাপিত হয়। সুতরাং A~A

প্রতিজ্ঞা ৫. A ও B সমতুল সেট এবং B ও C সমতুল সেট হলে A ও C সমতুল সেট।

প্রমাণ: যেহেতু A~B, সুতরাং A এর প্রত্যেক সদস্য x এর সঙ্গে B এর একটি অনন্য সদস্য এর মিল করা যায়। আবার যেহেতু B~C, সুতরাং B এর এই সদস্য y এর সঙ্গে C এর একটি অনন্য সদস্য z এর মিল করা যায়। এখন A এর সদস্য x এর সঙ্গে C এর সদস্য z এর মিল করা হলে, A ও C সেটের মধ্যে একটি এক-এক মিল স্থাপিত হয়। অর্থাৎ, A~C হয়।

Content added By

আরও দেখুন...

Promotion