24,26, 28,31,35,36 উপাত্তের গড় কত?

Created: 2 years ago | Updated: 2 years ago
Updated: 2 years ago

উপাত্তের বিস্তার পরিমাপ (Measures of Dispersion) হলো এমন একটি গাণিতিক কৌশল যা কোনো একটি ডেটাসেটের মানগুলির মধ্যে বৈচিত্র্য বা ছড়িয়ে পড়ার পরিমাণ নির্ণয় করে। এটি আমাদের বুঝতে সাহায্য করে, ডেটা পয়েন্টগুলি গড়ের কাছাকাছি আছে নাকি বেশ ছড়িয়ে আছে।

বিস্তার পরিমাপের কিছু প্রধান পদ্ধতি হলো:


১. পরিসীমা (Range)

পরিসীমা হলো ডেটাসেটের সর্বোচ্চ মান থেকে সর্বনিম্ন মান বিয়োগ করে প্রাপ্ত মান। এটি একটি সহজ এবং সাধারণ বিস্তার পরিমাপ। তবে এটি শুধুমাত্র ডেটাসেটের সবচেয়ে বড় এবং সবচেয়ে ছোট মানের ওপর নির্ভরশীল, তাই মাঝে অন্যান্য মানগুলোর প্রভাব পড়তে পারে না।

ফর্মুলা:

\[
\text{Range} = \text{Maximum value} - \text{Minimum value}
\]


২. গড় বিচ্যুতি (Mean Deviation)

গড় বিচ্যুতি হলো একটি ডেটাসেটের প্রতিটি মানের গড় (mean) থেকে তার বিচ্যুতির গড়। এটি ডেটাসেটের মানগুলোর গড় থেকে কতটুকু বিচ্যুত হচ্ছে, তা পরিমাপ করে।

ফর্মুলা:

\[
\text{Mean Deviation} = \frac{1}{N} \sum_{i=1}^{N} |x_i - \mu|
\]

এখানে,

  • \(x_i\) হলো প্রতিটি ডেটা পয়েন্ট,
  • \(\mu\) হলো গড় মান,
  • \(N\) হলো ডেটা পয়েন্টের সংখ্যা।

৩. বিচ্যুতি (Variance)

বিচ্যুতি হলো প্রতিটি ডেটা পয়েন্টের গড় মান থেকে তার বিচ্যুতি (দ্বিগুণ) করে এর গড়। এটি ডেটাসেটের বিস্তৃতির পরিমাপ প্রদান করে। একটি কম বিচ্যুতি মানে ডেটা পয়েন্টগুলো গড়ের কাছাকাছি থাকে, আর একটি বড় বিচ্যুতি মানে ডেটা পয়েন্টগুলো বেশি ছড়িয়ে থাকে।

ফর্মুলা:

\[
\text{Variance} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2
\]

এখানে,

  • \(x_i\) হলো প্রতিটি ডেটা পয়েন্ট,
  • \(\mu\) হলো গড় মান,
  • \(N\) হলো ডেটা পয়েন্টের সংখ্যা।

৪. প্রমিত বিচ্যুতি (Standard Deviation)

প্রমিত বিচ্যুতি হলো বিচ্যুতির বর্গমূল। এটি ডেটাসেটের বিস্তার পরিমাপের আরো সাধারণ উপায়, কারণ এটি একই একক (unit) এ থাকে যা মূল ডেটার একক। এটি ডেটা পয়েন্টের গড় থেকে কতটুকু বিচ্যুতি হচ্ছে, তা স্পষ্টভাবে বোঝায়।

ফর্মুলা:

\[
\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}
\]

এখানে,

  • \(\sigma\) হলো প্রমিত বিচ্যুতি,
  • \(x_i\) হলো প্রতিটি ডেটা পয়েন্ট,
  • \(\mu\) হলো গড় মান,
  • \(N\) হলো ডেটা পয়েন্টের সংখ্যা।

৫. কোয়ারটাইল বিচ্যুতি (Interquartile Range, IQR)

কোয়ারটাইল বিচ্যুতি হলো প্রথম কোয়ারটাইল (Q1) এবং তৃতীয় কোয়ারটাইল (Q3) এর মধ্যে পার্থক্য। এটি ডেটাসেটের মধ্যবর্তী ৫০% ডেটা কতটুকু বিস্তৃত তা পরিমাপ করে। IQR হলো গড় মানের উপর নির্ভর না করে ডেটার স্ক্যাটারকে বিশ্লেষণ করে।

ফর্মুলা:

\[
\text{IQR} = Q3 - Q1
\]

এখানে,

  • \(Q1\) হলো প্রথম কোয়ারটাইল (25%),
  • \(Q3\) হলো তৃতীয় কোয়ারটাইল (75%)।

এগুলি হলো বিস্তার পরিমাপের কিছু গুরুত্বপূর্ণ পদ্ধতি, যেগুলি ডেটাসেটের বৈচিত্র্য বা পরিবর্তনশীলতা পরিমাপ করতে ব্যবহৃত হয়।

Promotion