দ্বিপদী রাশিটির বিস্তৃতি কোন ব্যবধিতে অভিসৃত?
দ্বিপদী বিস্তৃতি (Binomial Expansions) হল গাণিতিক এক পদ্ধতি যার মাধ্যমে \( (a + b)^n \) আকারের দ্বিপদী রাশিকে প্রসারিত করে ধারা আকারে প্রকাশ করা হয়। এই বিস্তৃতিতে মূলত দ্বিপদী উপপাদ্য (Binomial Theorem) ব্যবহৃত হয়, যা যেকোনো ধরণের ধনাত্মক পূর্ণসংখ্যা শক্তির জন্য কার্যকর।
দ্বিপদী উপপাদ্য অনুসারে, \( (a + b)^n \) এর বিস্তৃতি নিম্নরূপ হয়:
\[
(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k
\]
এখানে,
\[
\binom{n}{k} = \frac{n!}{k!(n - k)!}
\]
যদি \( (a + b)^3 \) গণনা করতে চাই, তাহলে উপপাদ্য অনুসারে:
\[
(a + b)^3 = \binom{3}{0} a^3 b^0 + \binom{3}{1} a^2 b^1 + \binom{3}{2} a^1 b^2 + \binom{3}{3} a^0 b^3
\]
যার মান হবে:
\[
= a^3 + 3a^2b + 3ab^2 + b^3
\]
দ্বিপদী সহগের কিছু গুণাগুণ রয়েছে যা দ্বিপদী বিস্তৃতিতে ব্যবহার করা হয়। যেমন:
দ্বিপদী বিস্তৃতি বিভিন্ন গাণিতিক এবং পরিসংখ্যানিক সমস্যায় গুরুত্বপূর্ণ ভূমিকা পালন করে, যেমন সম্ভাবনা নির্ধারণ, ধারার গঠন, এবং অন্যান্য গাণিতিক কার্যকলাপে।