(i) প্রত্যেক অব্যতিক্রমী ম্যাট্রিক্সের বিপরীত ম্যাট্রিক্স বিদ্যমান
(ii) A ও B বর্গাকার অব্যতিক্রমী ম্যাট্রিক্স হলে, (AB)-1 = B-1A-1
(iii) কোনো নির্ণায়কের অনুরূপ সারি এবং কলামসমূহ পরস্পর অবস্থান বিনিময় করলে নির্ণায়কের মানের পরিবর্তন হয়
নিচের কোনটি সঠিক?
ম্যাট্রিক্স (Matrix)
ম্যাট্রিক্স হলো সংখ্যা, প্রতীক, অথবা অভিব্যক্তির আয়তাকার বিন্যাস। একাধিক সারি (row) এবং কলাম (column) নিয়ে গঠিত একক সংগ্রহই হচ্ছে ম্যাট্রিক্স। এটি লিনিয়ার অ্যালজেব্রার একটি গুরুত্বপূর্ণ উপাদান। ম্যাট্রিক্স সাধারণত \( m \times n \) আকারে উপস্থাপিত হয়, যেখানে \( m \) নির্দেশ করে সারির সংখ্যা এবং \( n \) নির্দেশ করে কলামের সংখ্যা। ম্যাট্রিক্সের প্রত্যেকটি উপাদান নির্দিষ্ট স্থানে থাকে এবং এটি একটি নির্দিষ্ট মান প্রকাশ করে।
ম্যাট্রিক্স বিভিন্ন গাণিতিক, প্রকৌশল, বিজ্ঞানের ক্ষেত্রে যেমন ইমেজ প্রসেসিং, ডেটা বিশ্লেষণ, 3D গ্রাফিক্স এবং মেশিন লার্নিং ইত্যাদি ক্ষেত্রে ব্যবহার করা হয়। এটি লিনিয়ার সমীকরণ সমাধানে এবং ভেক্টর ও স্পেস ট্রান্সফরমেশনে সহায়ক।
নির্ণায়ক (Determinant)
নির্ণায়ক হলো ম্যাট্রিক্সের একটি স্কেলার মান যা ম্যাট্রিক্সের গুণফল এবং তার বিপরীত (inverse) থাকলে সেটি সনাক্ত করতে সাহায্য করে। এটি শুধুমাত্র বর্গাকার ম্যাট্রিক্সের জন্য সংজ্ঞায়িত এবং \( |A| \) বা \( \text{det}(A) \) দ্বারা প্রকাশ করা হয়। নির্ণায়ক একটি গুরুত্বপূর্ণ পরিমাপ কারণ এটি বলে দেয় যে একটি ম্যাট্রিক্স রৈখিক স্বাধীন (linearly independent) কিনা এবং সেটির বিপরীত (inverse) আছে কিনা।
ধরা যাক একটি \( 2 \times 2 \) ম্যাট্রিক্স \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), তাহলে এর নির্ণায়ক:
\[
|A| = ad - bc
\]
\[
|A| = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
সারসংক্ষেপ
ম্যাট্রিক্স ও নির্ণায়ক গাণিতিক বিশ্লেষণে গুরুত্বপূর্ণ ভূমিকা পালন করে। ম্যাট্রিক্সের ব্যবহার বিভিন্ন গণিত ও প্রকৌশল ক্ষেত্রে সমাধান প্রক্রিয়া সহজতর করে, আর নির্ণায়ক আমাদের ম্যাট্রিক্সের বিশেষ বৈশিষ্ট্য বুঝতে সাহায্য করে, যা সমীকরণ সমাধান এবং অন্যান্য গাণিতিক প্রয়োগে বিশেষ ভূমিকা পালন করে।