ম্যাট্রিক্সের অনেক মৌলিক গাণিতিক সূত্র রয়েছে, যা ম্যাট্রিক্সের অপারেশন ও বিভিন্ন গাণিতিক প্রয়োগে ব্যবহৃত হয়। এখানে কিছু গুরুত্বপূর্ণ সূত্র এবং তার প্রমাণ দেওয়া হলো:
সূত্র:
\[
A + B = B + A
\]
এখানে, \( A \) এবং \( B \) একই আকারের দুটি ম্যাট্রিক্স।
প্রমাণ:
যেহেতু ম্যাট্রিক্সের যোগফলে প্রতিটি উপাদান শুধুমাত্র ঐ দুইটি ম্যাট্রিক্সের সংশ্লিষ্ট উপাদানের যোগফল হয়, তাই,
\[
A + B = \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix}, \quad B + A = \begin{bmatrix} b_{ij} + a_{ij} \end{bmatrix}
\]
এবং যেহেতু \( a_{ij} + b_{ij} = b_{ij} + a_{ij} \), এটি কমিউটেটিভ প্রপার্টি।
সূত্র:
\[
A(BC) = (AB)C
\]
এখানে, \( A \), \( B \), এবং \( C \) হল ম্যাট্রিক্স, এবং \( AB \), \( BC \) তাদের গুণফল।
প্রমাণ:
ম্যাট্রিক্স গুণফলে প্রতিটি উপাদান কলাম এবং সারির গুণফল হয়। এই গুণফল কম্পিউট করার সময় অ্যাসোসিয়েটিভ প্রপার্টি ঠিকভাবে কাজ করে, কারণ গুণফলে প্রতিটি উপাদান পর্যায়ক্রমে গুণ হয়। তাই \( A(BC) = (AB)C \) হবে।
সূত্র:
\[
k(A + B) = kA + kB
\]
এখানে, \( A \) এবং \( B \) হল ম্যাট্রিক্স এবং \( k \) একটি স্কেলার সংখ্যা।
প্রমাণ:
ম্যাট্রিক্স \( A \) এবং \( B \)-এর উপাদানগুলো যখন স্কেলার \( k \)-এর সাথে গুণ করা হয়, তখন এটি হবে:
\[
k(A + B) = k \begin{bmatrix} a_{ij} + b_{ij} \end{bmatrix} = \begin{bmatrix} k(a_{ij} + b_{ij}) \end{bmatrix}
\]
এবং,
\[
kA + kB = \begin{bmatrix} k a_{ij} \end{bmatrix} + \begin{bmatrix} k b_{ij} \end{bmatrix} = \begin{bmatrix} k(a_{ij} + b_{ij}) \end{bmatrix}
\]
এটা সমান হবে। তাই, \( k(A + B) = kA + kB \) প্রমাণিত হলো।
সূত্র:
\[
k(AB) = (kA)B = A(kB)
\]
এখানে, \( A \), \( B \) ম্যাট্রিক্স এবং \( k \) একটি স্কেলার সংখ্যা।
প্রমাণ:
\( k \) স্কেলার সংখ্যাটি গুণফলের উপর বিতরণযোগ্য। অর্থাৎ, \( k \)-এর সাথে গুণফলে প্রতিটি উপাদানকে \( k \)-এর গুণফলে গুণ করা হয়। তাই,
\[
k(AB) = \begin{bmatrix} k \times (a_{ij} \times b_{ij}) \end{bmatrix}
\]
এবং,
\[
(kA)B = \begin{bmatrix} (k \times a_{ij}) \times b_{ij} \end{bmatrix}, \quad A(kB) = \begin{bmatrix} a_{ij} \times (k \times b_{ij}) \end{bmatrix}
\]
তাহলে, \( k(AB) = (kA)B = A(kB) \) প্রমাণিত হলো।
সূত্র:
\[
(AB)^T = B^T A^T
\]
এখানে, \( A \) এবং \( B \) ম্যাট্রিক্স।
প্রমাণ:
\( AB \)-এর ট্রান্সপোজ হবে:
\[
(AB)^T = \begin{bmatrix} (AB){ij} \end{bmatrix}^T = \begin{bmatrix} (AB){ji} \end{bmatrix}
\]
এবং,
\[
B^T A^T = \begin{bmatrix} B_{ij} \end{bmatrix}^T \begin{bmatrix} A_{ij} \end{bmatrix}^T = \begin{bmatrix} B_{ji} A_{ji} \end{bmatrix}
\]
তাহলে, \( (AB)^T = B^T A^T \) প্রমাণিত হলো।
সূত্র:
\[
A^{-1}A = I
\]
এখানে, \( A^{-1} \) হল \( A \)-এর ইনভার্স, এবং \( I \) হল ঐ ম্যাট্রিক্সের আইডেন্টিটি ম্যাট্রিক্স।
প্রমাণ:
যেহেতু \( A^{-1} \) হল \( A \)-এর ইনভার্স, এবং ইনভার্সের সংজ্ঞা অনুযায়ী,
\[
A^{-1}A = I
\]
এটি গাণিতিকভাবে সঠিক।
সূত্র:
\[
\text{det}(AB) = \text{det}(A) \times \text{det}(B)
\]
এখানে, \( A \) এবং \( B \) ম্যাট্রিক্স।
প্রমাণ:
ডিটারমিন্যান্টের গুণফলে এটি প্রমাণ করা যায় যে, যখন দুটি ম্যাট্রিক্সের গুণফল হবে, তাদের ডিটারমিন্যান্টের গুণফল হবে। এটি একটি সাধারণ গাণিতিক তত্ত্ব যা ম্যাট্রিক্সের উপাদানের উপর ভিত্তি করে কাজ করে।
এই গুণাবলীর সাহায্যে ম্যাট্রিক্সের বিভিন্ন গাণিতিক সমীকরণ এবং প্রয়োগ করা যায়। এগুলো লিনিয়ার অ্যালজেব্রা, সিস্টেম অফ লিনিয়ার ইকুয়েশন, এবং পরিসংখ্যান বা অন্যান্য গাণিতিক সমস্যা সমাধানে অত্যন্ত গুরুত্বপূর্ণ।
Read more