x3-ax2+b=0 সমীকরণের মুলত্রয় α β and γ হলে α2 এর মান কোনটি?

Created: 2 years ago | Updated: 1 year ago
Updated: 1 year ago

বহুপদী (Polynomials)

গাণিতিকভাবে বহুপদী বা পলিনোমিয়াল একটি এক্সপ্রেশন যা এক বা একাধিক চলক ও স্থির সংখ্যা দিয়ে তৈরি হয়। বহুপদী একটি চলক \( x \) এবং কনস্ট্যান্ট \( a \) এর সমন্বয়ে বহুপদী গণনা করা হয়। উদাহরণস্বরূপ, \( ax^n + bx^{n-1} + \dots + cx + d \) একটি বহুপদী।

বহুপদী সমীকরণের মধ্যে প্রতিটি পদ একটি নির্দিষ্ট শক্তি বা ডিগ্রি দিয়ে থাকে, যেমন \( x^n \), যেখানে \( n \) হল চলকের ক্ষমতা। এই ডিগ্রি নির্ধারণ করে বহুপদীটি কত ধরনের বা কত সংখ্যার হবে।


বহুপদী সমীকরণ (Polynomial Equations)

বহুপদী সমীকরণ হল এমন একটি সমীকরণ, যেখানে একটি বহুপদী এক্সপ্রেশনকে শূন্যের সাথে সমান করে রাখা হয়। সাধারণভাবে বহুপদী সমীকরণকে নিচের রূপে লেখা যায়:

\[
ax^n + bx^{n-1} + \dots + cx + d = 0
\]

এখানে, \( a \), \( b \), \( c \), এবং \( d \) হল সমীকরণের ধ্রুবক (কনস্ট্যান্ট) পদ। বহুপদী সমীকরণের মূল বা রুট খুঁজে বের করা মানে \( x \)-এর সেই মান নির্ধারণ করা যাতে সমীকরণের মান শূন্য হয়।


বহুপদীর ধরন অনুযায়ী উদাহরণসমূহ:

  1. একপদী (Monomial): \( 3x \)
  2. দ্বিপদী (Binomial): \( x^2 - 5x \)
  3. ত্রিপদী (Trinomial): \( x^3 + 4x^2 - 7x \)

বহুপদী সমীকরণের সমাধান প্রক্রিয়া

বহুপদী সমীকরণের সমাধান করা মানে সেই মূলগুলো (roots) খুঁজে বের করা যা বহুপদীকে শূন্যে পরিণত করে। সমীকরণের সমাধান করার পদ্ধতি বিভিন্ন হতে পারে, যেমন:

  • ফ্যাক্টরিং: সমীকরণের পদ্ধতি হিসেবে ফ্যাক্টরিং দ্বারা মূল বের করা।
  • গ্রাফিকাল পদ্ধতি: একটি গ্রাফের সাহায্যে বহুপদীর মূল নির্ধারণ করা।
  • কোয়ার্টিক ফর্মুলা: দ্বিতীয় ডিগ্রীর বহুপদী সমীকরণের ক্ষেত্রে কোয়ার্টিক ফর্মুলা ব্যবহার করে মূল বের করা যায়।

Promotion