একটি পাখা মিনিটে 60 বার ঘোরে। পাখাটির কৌণিক বেগ কত?

Created: 2 years ago | Updated: 11 months ago
Updated: 11 months ago

     চলন গতির ক্ষেত্রে আমরা দেখেছি m ভরের কোনো বস্তু v  বেগে গতিশীল হলে তার ভরবেগ তথা রৈখিক ভরবেগ P=mv একটি গুরুত্বপূর্ণ রাশি। ঘূর্ণনগতির ক্ষেত্রে ভরবেগের অনুরূপ রাশি হচ্ছে কৌণিক ভরবেগ। কোনো বিন্দুর m সাপেক্ষে ভরবেগের ভ্রামকই হচ্ছে কণাটির কৌণিক ভরবেগ।

    সংজ্ঞা : কোনো বিন্দু বা অক্ষকে কেন্দ্র করে ঘূর্ণায়মান কোনো কণার ব্যাসার্ধ ভেক্টর এবং ভরবেগের ভেক্টর গুণফলকে ঐ বিন্দু বা অক্ষের সাপেক্ষে কণাটির কৌণিক ভরবেগ বলে।

চিত্র :৪.১৮

   ব্যাখ্যা : ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর r এবং ঐ কণার ভরবেগ হলে, p বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগ হচ্ছে,

L=r×p... (4.32)

ঘূর্ণন কেন্দ্র থেকে দূরত্বে কোনো কণার ভরবেগ p হলে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান L হবে-

L = rp sinθ

বা, L = pr sinθ

এখানে θ হচ্ছে  r এবং 'p  এর অন্তর্ভুক্ত কোণ। কিন্তু r sin θ হচ্ছে ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়া রেখার লম্ব দূরত্ব (চিত্র : ৪-১৮)। সুতরাং কোনো কণার ভরবেগ এবং ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান ।

 দিক : কৌণিক ভরবেগ একটি ভেক্টর রাশি। এর দিক  r×pএর দিকে।

একটি ডানহাতি স্কুকে r এবং 'pএর সমতলে লম্বভাবে স্থাপন করে  r থেকে 'p এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।

মাত্রা ও একক : কৌণিক ভরবেগের মাত্রা হচ্ছে ভরবেগ × দূরত্বের মাত্রা অর্থাৎ ML2T-1 এবং এর একক হচ্ছে kg m2s-1

তাৎপর্য : কোনো বস্তুর কৌণিক ভরবেগ 30 kg ms-1 বলতে বোঝায় ঐ বস্তুর কৌণিক ভরবেগ 1 kgm2

জড়তার ভ্রামকবিশিষ্ট কোনো বস্তুর কৌণিক বেগ 30 rad s-1 হলে যে কৌণিক ভরবেগ হবে তার সমান।

বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর কৌণিক ভরবেগ হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।

 

কৌণিক ভরবেগ ও কৌণিক বেগের সম্পর্ক

    ধরা যাক, একটি বস্তু কোনো একটি অক্ষের সাপেক্ষে ω সমকৌণিক দ্রুতিতে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m1 ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r1 এবং কণাটির বেগ v1 হলে

   ঘূর্ণন অক্ষের সাপেক্ষে কণাটির কৌণিক ভরবেগ, P1r1 = m1v1r1

=m1 ωr21  [ :- v₁ = ω r₁ ]

ω m1r21

   অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m2 ভরের কৌণিক ভরবেগ = ω m2r21। এভাবে প্রতিটি বস্তুকণার জন্য কৌণিক = ভরবেগ বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির কৌণিক ভরবেগ L পাওয়া যাবে।

L= ωm₁r₁² + ωm₂r₂² +  ωm3r3²+...…

= ω ( m₁r₁² + m₂r₂² + m3r3² +…..)

=ωm1r21

=ωI….. (4.33)

বা, L=Iω=Idθdt

  :- এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক . কৌণিক ভরবেগ = জড়তার ভ্রামক x কৌণিক বেগ।

Content added By
Content updated By
Promotion