একটি বৃত্তের সমীকরণ নির্ণয় কর যা x-অক্ষকে স্পর্শ করে এবং (1, 1) বিন্দু দিয়ে যায় এবং যার কেন্দ্র প্রথম চতুর্ভাগে x+y=3 রেখার উপর অবস্থিত।

Created: 2 years ago | Updated: 6 months ago
Updated: 6 months ago

কনিক (Conics) হল গাণিতিক বিশেষণ যা বিভিন্ন ধরনের রেখার বা কার্ভের একটি গ্রুপকে বোঝাতে ব্যবহৃত হয়, যা একটি কনিকে তৈরি হয়। কনিকের মধ্যে প্রধানত ৪টি ধরনের গাণিতিক আকার রয়েছে:

১. পরাবৃত্ত (Ellipse) – এটি একটি দ্বি-মাত্রিক উপবৃত্তাকার আকার, যেখানে দুটি ফোকাল পয়েন্ট থাকে এবং প্রতিটি বিন্দু এই দুটি ফোকাল পয়েন্টের সমষ্টিগত দৈর্ঘ্য সমান থাকে।

২. বৃত্ত (Circle) – এটি একটি বিশেষ ধরনের পরাবৃত্ত যা সব দিক থেকে সমান দৈর্ঘ্যের। বৃত্তের সকল পয়েন্ট কেন্দ্র থেকে সমান দুরত্বে অবস্থিত।

৩. অর্ন্তবৃত্ত (Hyperbola) – এটি দুটি ভিন্ন ভিন্ন অংশ নিয়ে গঠিত যা সমান্তরাল রেখা এবং কিছু নির্দিষ্ট ফোকাল পয়েন্টের মধ্যে সৃষ্টি হয়।

৪. অবতল পরাবৃত্ত (Parabola) – এটি একটি বাঁকা রেখা যা একটি একক ফোকাল পয়েন্টের সাথে সম্পর্কিত এবং অক্ষের সাথে একটি নির্দিষ্ট কোণে থাকে।

এই কনিকের সমীকরণগুলি সাধারণত দ্বিতীয় ডিগ্রি সমীকরণ হিসেবে প্রকাশ করা হয় এবং এটি বিশেষভাবে ইউক্লিডীয় জ্যামিতি ও ক্যালকুলাসের নানা ক্ষেত্রে ব্যবহৃত হয়।

Promotion