Job
Solve the following Mathematical Problems :

Two candles having the same length are such that one burns out completely in 3 hours at a uniform rate and the other in 4 hours. At what time should both the candles be lighted: together so that at 4 PM, the length of one is twice the length of the other?

Created: 3 years ago | Updated: 4 months ago
Updated: 4 months ago
Ans :

প্রশ্নে বলা হচ্ছে যে, দুটি মোমবাতি একটি সুষম গতিতে 3 ঘণ্টায় ও অপরটি ও 4 ঘণ্টা পুরোপুরি জ্বলে শেষ হয়। কখন দুটি মোম একত্রে জ্বালালে বিকাল 4 টার সময় একটির দৈর্ঘ্য অপরটির দ্বিগুণ থাকবে? 

Let l be length of each candle and x be the number of hours before 4pm.Length of 1st candle burnt 13xLength of 2nd candle burnt 14xRemaining of 1st candle=l-lx3 at 4 pm & Remaining of 2nd candle= l-lx4at 4 pmAccording to question, l - lx4= 2l-lx3l 1 - x4=2l1-x31 - x4=21-x31-x4=2-2x32x3-x4=2-14x-3x12=15x12=1x=125=225hours= 2 hours and 24 minutesRequired times= 4-2 hours 24 minutes= 1 hour 36 minutes=1 : 36 pm

(ans)

2 years ago

গণিত

.

Content added By
Content updated By

Related Question

View More

ক ৯ দিনে করে ১টি কাজ 

ক ১ দিনে করে ১/৯ অংশ 

আবার,

খ ১৮ দিনে করে করে ১টি কাজ 

খ ১ দিনে করে ১/১৮ অংশ

ক + খ একত্রে করে ( ১/৯ + ১/১৮) = ১/৬ 

খ ১ দিনে করে ১/১৮ অংশ 

খ ৬ দিনে করে ( ৬*১/ ১৮) = ১/৩ অংশ 

কাজ বাকি  ( ১- ১/৩) = ২/৩ অংশ 

ক+খ ১/৬ অংশ করে ১ দিনে 

ক+খ ২/৩ অংশ করে ( ৬*২/৩) = ৪ দিনে 

অতএব মোট সময় ( ৬+৪) = ১০ দিন ( উত্তর )  

ইংরেজিতে ফেল করেছে    (১০০- ৭০)%  =  ৩০% 

বাংলায় ফেল করেছে       (১০০- ৮০)%   = ২০% 

শুধু ইংরেজিতে ফেল করেছে = (৩০ - ১০)% = ২০% 

শুধু বাংলায় ফেল করেছে    = (২০ - ১০)% = ১০% 

উভয় বিষয়ে পাস করেছে     = ১০০% - (২০% + ১০% + ১০%) = ৬০% 

  প্রশ্নমতে, 

         শিক্ষার্থী সংখ্যা         ৬০%  = ৩৬০ জন

        শিক্ষার্থী সংখ্যা          ১%    = ৩৬০/৬০  জন

  ∴    শিক্ষার্থী সংখ্যা     ১০০%    = ৩৬০/৬০ ×১০০ জন

                                               = ৬০০০ জন। 

দেয়া আছে, 

দিন বাকি থাকে... (৮০-২০)=৬০ দিন

কাজ বাকি থাকে…(পূর্ন অংশ বা ১অংশ - ১/৫ অংশ)=৪/৫ অংশ

প্রশ্ন মতে,

          ২০ দিনে ১/৫ আংশ কাজ করে ৬০জন লোকে 

           ১   “       ১/৫  “            ” ৬০*২০ “ ”

           ১   “         ১   “            ” ৬০*২০*৫ “  ”

           ৬০  “      ৪/৫   ”        “   ৬০*২০*৫*৪/৬০*৫  ”  " 

                                                 = ৮০ জন

     অতিরিক্ত লোক লাগবে  (৮০-৬০)= ২০ জন (উওর)     

নৌকা যেতে পারে ৮ কিমি অনুকূলে এবং ৫ কিমি প্রতিকূলে, তাহলে নৌকার বেগ অনুকূলে (Vr) এবং প্রতিকূলে (Vc) প্রতিটি স্রোতের বেগের সাথে যোগ হতে হবে।

স্রোতের বেগ হলো (Vs)। প্রথমে নৌকার অনুকূলে বেগ বের করা যাক:

Vr = Vs + 1 (সংখ্যা 1 নৌকার বেগ এবং স্রোতের অনুকূল বেগের মধ্যে পার্থক্য)

প্রতিকূলে নৌকার বেগ বের করা যাক:

Vc = Vs - 1 (সংখ্যা 1 নৌকার বেগ এবং স্রোতের প্রতিকূল বেগের মধ্যে পার্থক্য)

আমরা জানি যে যদি স্রোতের বেগ প্রতি ঘণ্টায় ১ কিমি অধিক হয় তবে নৌকা প্রতিকূলে দ্বিগুণ বেগে যেতে পারে, তাহলে আমরা নিম্নলিখিত সমীকরণ ব্যবহার করে এই সমস্যাটি সমাধান করতে পারি:

Vc = 2 * Vr

Vs - 1 = 2 * (Vs + 1)

Vs - 1 = 2Vs + 2

Vs - 2Vs = 2 + 1

-Vs = 3

Vs = -3

আমরা স্রোতের বেগ হলো -3 কিমি/ঘণ্টা (প্রতিকূল দিকে যাওয়ার কারণে সর্বনিম্ন মান নেগেটিভ)।

আমরা নৌকার অনুকূলে বেগ (Vr) বের করতে পারি:

Vr = Vs + 1 Vr = (-3) + 1 Vr = -2 কিমি/ঘণ্টা

তাহলে, নৌকা সম্পূর্ণ ৮ কিমি অনুকূলে যেতে পারে এবং স্রোতের বেগ হলো -3 কিমি/ঘণ্টা এবং নৌকার অনুকূলে বেগ হলো -2 কিমি/ঘণ্টা
 

Promotion
NEW SATT AI এখন আপনাকে সাহায্য করতে পারে।

Are you sure to start over?

Loading...