সম্ভাবনা অপেক্ষক, সম্ভাবনা ঘনত্ব অপেক্ষক, বিন্যাস অপেক্ষক

একাদশ- দ্বাদশ শ্রেণি - পরিসংখ্যান - পরিসংখ্যান ২য় পত্র | | NCTB BOOK
10
10

সম্ভাবনা অপেক্ষক (Probability Function)

সম্ভাবনা অপেক্ষক এমন একটি ফাংশন যা দৈব চলকের প্রতিটি নির্দিষ্ট মানের জন্য সম্ভাবনা নির্ধারণ করে। এটি মূলত বিচ্ছিন্ন দৈব চলকের জন্য ব্যবহৃত হয়।

সংজ্ঞা:

\( P(X = x) = p(x) \), যেখানে \(p(x)\) হলো দৈব চলক \(X\)-এর \(x\) মানের সম্ভাবনা।

বৈশিষ্ট্য:

  1. \( 0 \leq P(X = x) \leq 1 \)
  2. সম্ভাবনার যোগফল ১:
    \[
    \sum_{x \in S} P(X = x) = 1
    \]
    এখানে \(S\) হলো দৈব চলকের সম্ভাব্য মানগুলোর সেট।

উদাহরণ:

একটি মুদ্রা নিক্ষেপ করলে:
\( P(X = Head) = 0.5 \) এবং \( P(X = Tail) = 0.5 \)।


সম্ভাবনা ঘনত্ব অপেক্ষক (Probability Density Function, PDF)

সম্ভাবনা ঘনত্ব অপেক্ষক (PDF) একটি ফাংশন যা ধারাবাহিক দৈব চলকের মানগুলোর জন্য সম্ভাবনার একটি ঘনত্ব নির্ধারণ করে। এটি নির্দিষ্ট একটি মানের জন্য সরাসরি সম্ভাবনা দেয় না বরং একটি নির্দিষ্ট পরিসরের মধ্যে সম্ভাবনা গণনা করতে সাহায্য করে।

সংজ্ঞা:

PDF \(f(x)\)-এর জন্য,
\( P(a \leq X \leq b) = \int_{a}^{b} f(x) dx \)

বৈশিষ্ট্য:

  1. \( f(x) \geq 0 \), সব \(x\)-এর জন্য।
  2. \( f(x)\)-এর মোট ক্ষেত্রফল ১:
    \[
    \int_{-\infty}^{\infty} f(x) dx = 1
    \]

উদাহরণ:

ধরা যাক \(X\) একটি ধারাবাহিক দৈব চলক, যার ঘনত্ব ফাংশন \(f(x) = 2x\) \((0 \leq x \leq 1)\)।
তাহলে \( P(0.2 \leq X \leq 0.5) = \int_{0.2}^{0.5} 2x , dx = 0.21 \)।


বিন্যাস অপেক্ষক (Cumulative Distribution Function, CDF)

বিন্যাস অপেক্ষক (CDF) একটি ফাংশন যা দৈব চলকের একটি নির্দিষ্ট মানের চেয়ে কম বা সমান মানগুলোর সঞ্চিত সম্ভাবনা নির্ধারণ করে।

সংজ্ঞা:

\( F(x) = P(X \leq x) \)

  • বিচ্ছিন্ন দৈব চলকের জন্য:
    \[
    F(x) = \sum_{t \leq x} P(X = t)
    \]
  • ধারাবাহিক দৈব চলকের জন্য:
    \[
    F(x) = \int_{-\infty}^{x} f(t) , dt
    \]

বৈশিষ্ট্য:

  1. \( 0 \leq F(x) \leq 1 \)।
  2. \( F(x)\) একটি অখণ্ড ও অমসৃণ (non-decreasing) ফাংশন।
  3. \( \lim_{x \to -\infty} F(x) = 0 \) এবং \( \lim_{x \to \infty} F(x) = 1 \)।

উদাহরণ:

ধরা যাক একটি ছক্কা নিক্ষেপ করা হয়েছে।

  • \(X\)-এর মানগুলো হলো \(1, 2, 3, 4, 5, 6\)।
  • \(P(X = x) = \frac{1}{6}\)।
    তাহলে,
    \[
    F(3) = P(X \leq 3) = P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}
    \]

প্রধান পার্থক্য

পদ্ধতিবিচ্ছিন্ন দৈব চলকধারাবাহিক দৈব চলক
সম্ভাবনা অপেক্ষক (PF)\( P(X = x) = p(x) \)প্রযোজ্য নয়
সম্ভাবনা ঘনত্ব (PDF)প্রযোজ্য নয়\( f(x) \)
বিন্যাস অপেক্ষক (CDF)\( F(x) = \sum_{t \leq x} p(t) \)\( F(x) = \int_{-\infty}^{x} f(t) dt \)

সারসংক্ষেপ

  • সম্ভাবনা অপেক্ষক (PF): বিচ্ছিন্ন দৈব চলকের প্রতিটি মানের সম্ভাবনা।
  • সম্ভাবনা ঘনত্ব অপেক্ষক (PDF): ধারাবাহিক দৈব চলকের সম্ভাবনার ঘনত্ব।
  • বিন্যাস অপেক্ষক (CDF): একটি নির্দিষ্ট মান পর্যন্ত সঞ্চিত সম্ভাবনা।
Promotion