সংযোজিত ফাংশন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK
14
14

সংযোজিত ফাংশন (Bijective Function) হলো এমন একটি ফাংশন, যা একসঙ্গে এক-এক ফাংশন (Injective) এবং সার্বিক ফাংশন (Onto) উভয়ই। অর্থাৎ, সংযোজিত ফাংশনের প্রতিটি ইনপুট মানের জন্য একটি স্বতন্ত্র আউটপুট থাকে এবং সেই আউটপুট কোডোমেনের প্রতিটি উপাদানকে অন্তর্ভুক্ত করে। এই ধরনের ফাংশনকে বাইজেক্টিভ ফাংশনও বলা হয়।


সংযোজিত ফাংশনের বৈশিষ্ট্য

১. এক-এক এবং সার্বিক উভয়ই: সংযোজিত ফাংশন এমন একটি ফাংশন, যা একদিকে যেমন এক-এক ফাংশনের শর্ত পূরণ করে, অর্থাৎ প্রতিটি ইনপুট মানের জন্য একটি স্বতন্ত্র আউটপুট থাকে, অন্যদিকে এটি সার্বিকও, অর্থাৎ কোডোমেনের প্রতিটি উপাদান একটি ইনপুটের মাধ্যমে অর্জন করা যায়।

২. ইনভার্স ফাংশনের অস্তিত্ব: যেহেতু সংযোজিত ফাংশনে প্রতিটি আউটপুটের জন্য একটি নির্দিষ্ট ইনপুট থাকে এবং ফাংশনটি কোডোমেনের সমস্ত মানকে অন্তর্ভুক্ত করে, তাই এই ধরনের ফাংশনের ইনভার্স ফাংশন থাকা সম্ভব। অর্থাৎ, সংযোজিত ফাংশন ইনভার্টেবল।


উদাহরণ

ধরা যাক, \( f: \mathbb{R} \rightarrow \mathbb{R} \) একটি ফাংশন, যেখানে \( f(x) = 2x + 3 \)।

  • এটি এক-এক, কারণ \( f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \)।
  • এটি সার্বিকও, কারণ যেকোনো \( y \in \mathbb{R} \)-এর জন্য \( f(x) = y \) হলে \( x = \frac{y - 3}{2} \) পাওয়া যায়, অর্থাৎ প্রতিটি \( y \)-এর জন্য একটি \( x \) আছে।

এখন, যেহেতু এই ফাংশনটি একসঙ্গে এক-এক এবং সার্বিক, তাই এটি একটি সংযোজিত ফাংশন।


সংযোজিত ফাংশনের ব্যবহার

সংযোজিত ফাংশন গণিতে অত্যন্ত গুরুত্বপূর্ণ, বিশেষ করে ফাংশনের ইনভার্স খুঁজে বের করতে এবং সমীকরণের সমাধানে। সংযোজিত ফাংশন ব্যবহার করে ডেটাবেস মডেলিং, এনক্রিপশন এবং ডিকোডিং প্রক্রিয়ায় কার্যকর উপায়ে কাজ করা যায়।

Promotion