1নং টেবিলে বেশ কিছু উপপাদ্য রয়েছে, এদের ভেতর থেকে ডি মরগান উপপাদ্যটিকে আলাদাভাবে বিবেচনা করা দরকার। বুলিয়ান এলজেবরার শুরুতে বলা হয়েছিল যে এখানে তিনটি প্রক্রিয়া করা হয়, পরিপূরক, গুণ এবং যোগ। আমরা ডি মরগান সূত্রটিতে দেখতে পাই দুটি চলকের যোগকে পরিপুরক করা হলে সেটি পূরক চলকের গুণ হিসেবে লেখা যায়। অর্থাৎ যোগকে গুণ দিয়ে প্রকাশ করা যায়।
x + y
= x.7
এই উপপাদ্যের একটি সুদূরপ্রসারী প্রভাব রয়েছে। যেহেতু পরিপুরক প্রক্রিয়া প্রয়োগ করে যেকোনো যোগকে গুণ হিসেবে প্রকাশ করা যায় তাই আমরা ইচ্ছে করলেই বলতে পারি, বুলিয়ান এলজেবরাতে মৌলিক প্রক্রিয়া
তিনটি নয়- দুইটি। পরিপুরক এবং গুণ। আবার আমরা যদি দ্বিতীয় ডি মরগান সুত্রটি ব্যবহার করি তাহলে পরিপুরক যেকোনো গুণকে আমরা যোগ
দিয়ে পাল্টে দিতে পারব। অর্থাৎ
x. y = x + y
কাজেই একইভাবে আমরা বলতে পারি বুলিয়ান এলজেবরাতে প্রক্রিয়া তিনটি নয়, প্রক্রিয়া দুটি অর্থাৎ পরিপূরক এবং যোগ। অর্থাৎ আমরা দেখতে পাচ্ছি বুলিয়ান এলজেবরাতে মৌলিক প্রক্রিয়া দুইটি, পরিপূরক গু গুণ কিংবা পরিপুরক ও যোগ।
: Domination উপপাদ্য x + 1 = 1 কে গুন দিয়ে প্রকাশ করা। উত্তর:x + 1 = 1
দুইপাশে পরিপূরক করে আমরা লিখতে পারি, x + 1 =
ডি মরগান উপপাদ্য ব্যবহার করে x 1 = 1 কিংবা x 0 = 0 (যেহেতু 1 = 0 )
X কে যদি আমরা অন্য একটি চলক y দিয়ে প্রতিস্থাপন করি : J. 0 = 0 যেটি Domination উপপাদ্যের দ্বিতীয় সূত্রটি।
e: Domination উপপাদ্য x 0 = 0 যোগ দিয়ে প্রকাশ কর।
উত্তর : দুই পাশে পরিপূরক নিয়ে : x 0 = 0
ডি মরগান উপপাদ্য ব্যবহার করে x +0 = 0
x + 1 = 1 (সেহেতু 1) =
যদিকে আমরা জন্য একটি চলক y দিয়ে প্রতিস্থাপন করি :
y + 1 = 1 যেটি Domination উপপাদ্যের প্রথম সূত্রটি।
দুইয়ের অধিক চলকের জন্য ডি মরগান উপপাদ্য যদিও ডি মরগান উপপাদ্যটি x ও y দুটি চলকের জন্য দেখানো হয়েছিল কিন্তু এটি আসলে দুইয়ের অধিক যে
কোনো সংখ্যক চলকের জন্য সত্যি। অর্থাৎ ডি মরগান সূত্রের ব্যাপক গ্রুপ দুইটি হচ্ছে :
X1 + 2 + 3 ...Xn = X1.X2.X3... Xn X1.X2.X3 ...Xn = 1 + 2 + 3 .....
নিজে কর : X1 + x2 = x1.X2 হলে প্রমাণ কর X1 + 2 + 3 ...Xn = = X1.X2X3... Xn
R: X1+X2 + xX3 ... Xn = X1 + (x2 + x3 ... Xn) X1.(x2 + X3 ... Xn) =
নিজে কর : 12 = 1 + x2 হলে প্রমাণ কর X1.X2.X3 ...Xn = 1 + 2 + 3 Xn
Read more