বিপরীত ত্রিকোণমিতিক ফাংশনের মূল সমীকরণগুলি ত্রিকোণমিতিক ফাংশনগুলির মান থেকে তাদের সংশ্লিষ্ট কোণ বের করার জন্য ব্যবহৃত হয়। প্রতিটি বিপরীত ত্রিকোণমিতিক ফাংশনের জন্য মূল সমীকরণগুলি হলো:
বিপরীত সাইন ফাংশনের মূল সমীকরণ হল:
\[
\sin^{-1}(x) = \theta \quad \text{যেখানে} \quad \sin(\theta) = x, , \text{এবং} , -1 \leq x \leq 1 , \text{এবং} , -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
\]
এটি অর্থাৎ \( \theta \) হলো সেই কোণ, যার সাইন \( x \) সমান।
বিপরীত কসমাইন ফাংশনের মূল সমীকরণ হল:
\[
\cos^{-1}(x) = \theta \quad \text{যেখানে} \quad \cos(\theta) = x, , \text{এবং} , -1 \leq x \leq 1 , \text{এবং} , 0 \leq \theta \leq \pi
\]
এটি অর্থাৎ \( \theta \) হলো সেই কোণ, যার কসমাইন \( x \) সমান।
বিপরীত ট্যানজেন্ট ফাংশনের মূল সমীকরণ হল:
\[
\tan^{-1}(x) = \theta \quad \text{যেখানে} \quad \tan(\theta) = x, , \text{এবং} , -\infty < x < \infty , \text{এবং} , -\frac{\pi}{2} < \theta < \frac{\pi}{2}
\]
এটি অর্থাৎ \( \theta \) হলো সেই কোণ, যার ট্যানজেন্ট \( x \) সমান।
এই সমীকরণগুলি ত্রিকোণমিতিক গুণফল থেকে সংশ্লিষ্ট কোণ বের করতে ব্যবহৃত হয় এবং গাণিতিক সমস্যাগুলির সমাধান করার জন্য গুরুত্বপূর্ণ।
Read more