কণার গতির সমীকরণ হচ্ছে, (সমীকরণ 8.7)
এখন আমরা এ সমীকরণের বিভিন্ন রাশির ভৌত তাৎপর্য নিয়ে আলোচনা করব।
সরল দোলন গতি সম্পন্ন কোনো কণার একটি পূর্ণ দোলনসম্পন্ন হতে যে সময় লাগে তাকে তার পর্যায়কাল T বলে ( 87 ) সমীকরণে সময় কে পরিমাণ বৃদ্ধি করা হলে সরণ হয়।
দেখা যাচ্ছে যে, সময় পর সরণের মান একই হচ্ছে অর্থাৎ সময় পর পর রাশিটির পুনরাবৃত্তি ঘটছে। সুতরাং হচ্ছে সরল দোলন গতির পর্যায়কাল T।
:- T =
আমরা জানি, = । সুতরাং T = সমীকরণ দাঁড়ায়,
এ সমীকরণ থেকে দেখা যায় যে, সরল দোলন গতির পর্যায়কাল স্পন্দনশীল কণাটির ভর m এবং বল ধ্রুবক k এর সাথে সম্পর্কিত। যেহেতু কোনো কণার ভর m নির্দিষ্ট
:-
অর্থাৎ সরল দোলন গতি সম্পন্ন কোনো কণার পর্যায়কাল বল ধ্রুবকের বর্গমূলের ব্যস্তানুপাতিক।
কোনো সরল দোলন গতি সম্পন্ন কণা একক সময়ে যে কয়টি পূর্ণ দোলন বা কম্পন সম্পন্ন করে তাকে তার কম্পাঙ্ক f বলে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi><mo>=</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><mo>=</mo><mfrac><mi>ω</mi><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><msqrt><mfrac><mi>k</mi><mi>m</mi></mfrac></msqrt></math>
সরল দোলন গতিসম্পন্ন কোনো কণা একক সময়ে যে কৌণিক দূরত্ব অতিক্রম করে তাকে কৌণিক কম্পাঙ্ক D বলে। পর্যায়কাল এবং কম্পাঙ্ক যথাক্রমে T এবং f হলে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mi>T</mi></mfrac><mo>=</mo><mn>2</mn><mi>π</mi><mi>f</mi><mo>=</mo><msqrt><mfrac><mi>k</mi><mi>m</mi></mfrac></msqrt></math>
(8.7) সমীকরণের ধ্রুবক A এর একটি সরল ভৌত তাৎপর্য আছে। আমরা জানি, sine অপেক্ষকের মান – 1 থেকে +1 পর্যন্ত হতে পারে। কাজেই মধ্যবর্তী সাম্যাবস্থান ( x = 0 ) থেকে সরণ x এর সর্বোচ্চ মান হতে পারে । যেহেতু কোনো কণা সাম্যাবস্থান থেকে যেকোনো এক দিকে যে সর্বোচ্চ দূরত্ব অতিক্রম করে তাকে বিস্তার এ বলে, সুতরাং A হচ্ছে সরল দোলন গতির বিস্তার।
সরল দোলন গতিসম্পন্ন কোনো কণার দশা বলতে ঐ কণার যেকোনো মুহূর্তে গতির সম্যক অবস্থা বোঝায়। কোনো একটি মুহূর্তে গতির সম্যক অবস্থা বলতে ঐ বিশেষ মুহূর্তে বস্তু কণাটির সরণ, বেগ, ত্বরণ, বল ইত্যাদি বোঝায়। (8.7) সমীকরণের ( ) রাশিটি হচ্ছে গতির দশা (Phase)। ধ্রুবক ৪ হলো দশা ধ্রুবক। একই বিস্তার এবং কম্পাঙ্কের কিন্তু ভিন্ন দশার একাধিক গতি হতে পারে।
যেমন, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> = 0° হলে
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>A</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mfenced><mrow><mi>ω</mi><mi>t</mi><mo>+</mo><mi>δ</mi></mrow></mfenced><mo>=</mo><mi>A</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mfenced><mrow><mi>ω</mi><mi>t</mi><mo>+</mo><mn>0</mn><mo>°</mo></mrow></mfenced></math>
বা, x = A sin
সুতরাং 1 = 0 সময়ে x = A অর্থাৎ সরণ হচ্ছে সর্বোচ্চ । এক্ষেত্রে কণাটির গতি শুরু হয় এক প্রান্ত থেকে। অন্য দশা ধ্রুবকের জন্য অন্য আদি সরণ পাওয়া যায়।
কণাটির আদি অবস্থান এবং দ্রুতি দ্বারা সরল দোলন গতির বিস্তার A এবং দশা ধ্রুবক <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> নির্ণীত হয়। এ দুই আদি শর্ত দ্বারা সঠিকভাবে A এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>δ</mi></math> এর মান নির্ধারিত হয়। একবার গতি শুরু হলে অবশ্য একটি নির্দিষ্ট কম্পাঙ্কের স্পন্দনশীল কণার বিস্তার ও দশা ধ্রুবক ধ্রুব থাকে, যদি না অন্যান্য বল ক্রিয়া করে।
(8.7) সমীকরণকে সময়ের সাপেক্ষে অন্তরীকরণ করে সরল দোলন গতি সম্পন্ন কণার বেগ পাওয়া যায়।
আমরা জানি সময় সাপেক্ষে সরণের পরিবর্তনের হারকে বেগ বলে। একে সাধারণত v দ্বারা প্রকাশ করা হয়।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mfenced><mi>x</mi></mfenced><mo> </mo><mfenced><mrow><mi>A</mi><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>ω</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mi>A</mi><mo> </mo><mi>ω</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>ω</mi><mi>t</mi><mspace linebreak="newline"/><mo> </mo><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>ω</mi><mi>t</mi><mo>=</mo><mfrac><mi>x</mi><mi>A</mi></mfrac><mo>,</mo><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>ω</mi><mi>t</mi><mo>=</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo> </mo><mi>ω</mi><mi>t</mi></mrow></msqrt><mo> </mo><mspace linebreak="newline"/><mi>v</mi><mo>=</mo><mi>A</mi><mi>ω</mi><msqrt><mrow><mn>1</mn><mo>−</mo><mi>s</mi><mi>i</mi><msup><mi>n</mi><mn>2</mn></msup><mo> </mo><mi>ω</mi><mi>t</mi></mrow></msqrt><mo> </mo><mo>=</mo><mi>A</mi><mi>ω</mi><msqrt><mrow><mn>1</mn><mo>−</mo><msup><mi>x</mi><mn>2</mn></msup><mo>/</mo><msup><mi>A</mi><mn>2</mn></msup></mrow></msqrt><mo> </mo><mspace linebreak="newline"/><mi>v</mi><mo>=</mo><mi>ω</mi><msqrt><mrow><msup><mi>A</mi><mrow><mn>2</mn><mo> </mo></mrow></msup><mo>−</mo><msup><mi>x</mi><mn>2</mn></msup></mrow></msqrt></math> ... …(8.9)
সমীকরণ (8.1) বেগ ও সরণের মধ্যে সম্পর্ক নির্দেশ করে।
৮.১ চিত্র অনুযায়ী N বিন্দুর গতিপথের মধ্য অবস্থানে তার বেগ সর্বাধিক এবং সরণ বৃদ্ধির সাথে সাথে বেগ কমতে থাকে এবং চরম অবস্থানে B বা D বিন্দুতে এর বেগ শূন্য হবে অর্থাৎ বিস্তারের প্রান্তে বেগ শূন্য হবে। সরল ছন্দিত গতি সম্বন্ধে কণার বেগ-সময় লেখচিত্র একটি cos সদৃশ লেখচিত্র [চিত্র ৮.১ (খ)]।
আমরা জানি সময় সাপেক্ষে বেগের পরিবর্তনের হারকে ত্বরণ বলে। একে a দ্বারা নির্দেশ করা হয়।
ত্বরণ, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mfenced><mi>v</mi></mfenced><mo>=</mo><mfrac><mi>d</mi><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo> </mo><mfenced><mrow><mi>A</mi><mo> </mo><mi>c</mi><mi>o</mi><mi>s</mi><mo> </mo><mi>ω</mi><mi>t</mi></mrow></mfenced><mo>=</mo><mo>−</mo><mi>A</mi><mo> </mo><msup><mi>ω</mi><mn>2</mn></msup><mo> </mo><mi>s</mi><mi>i</mi><mi>n</mi><mo> </mo><mi>ω</mi><mi>t</mi><mspace linebreak="newline"/><mi mathvariant="normal">a</mi><mo>=</mo><mo>−</mo><msup><mi mathvariant="normal">ω</mi><mn>2</mn></msup><mi mathvariant="normal">x</mi><mspace linebreak="newline"/></math>
সমীকরণ (8.10) ত্বরণ ও সরণের মধ্যে সম্পর্ক নির্দেশ করে। ঋণ চিহ্ন বুঝায় যে, ত্বরণ ও সরণ পরস্পর বিপরীতমুখী।
৮.১ (খ) চিত্রে N বিন্দুর গতিপথের চরম অবস্থানে ত্বরণ সর্বাধিক এবং মধ্য অবস্থানে ত্বরণ শূন্য হবে। ত্বরণ-সময় লেখচিত্র একটি ঋণাত্মক sin সদৃশ লেখ। ইহা সরল ছন্দিত গতিসম্পন্ন কণার ত্বরণের সমীকরণ নির্দেশ করে।
Read more