সূচক ফাংশন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ১ম পত্র | - | NCTB BOOK
90
90

সূচক ফাংশন (Exponential Function) এমন একটি ফাংশন, যেখানে ভেরিয়েবলটি সূচকে বা ঘাতে থাকে। এটি সাধারণত নিম্নোক্ত আকারে প্রকাশ করা হয়:

\[
f(x) = a \cdot b^x
\]

এখানে:

  • \( a \) হলো ধ্রুবক (যা \( 0 \neq a \)) এবং এটি ফাংশনের প্রাথমিক মান নির্দেশ করে।
  • \( b \) হলো বেস বা ভিত্তি (এবং \( b > 0 \) এবং \( b \neq 1 \)) যা সূচকে ব্যবহৃত হয়।
  • \( x \) হলো ভেরিয়েবল বা সূচক।

সূচক ফাংশনের বৈশিষ্ট্য

১. ডোমেন: সূচক ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: সূচক ফাংশনের রেঞ্জ \( y > 0 \), অর্থাৎ সব ধনাত্মক বাস্তব সংখ্যা।

৩. ক্ষয় ও বৃদ্ধির ধরন:

  • যদি \( b > 1 \) হয়, তাহলে ফাংশনটি ধনাত্মক গতিতে বৃদ্ধি পায় (Exponential Growth)।
  • যদি \( 0 < b < 1 \) হয়, তাহলে ফাংশনটি ক্রমাগত ক্ষয় পায় (Exponential Decay)।

৪. অক্ষীয় ছেদ বিন্দু: যখন \( x = 0 \), তখন \( f(x) = a \cdot b^0 = a \cdot 1 = a \)। অর্থাৎ, সূচক ফাংশনের গ্রাফ সবসময় \( y \)-অক্ষকে \( (0, a) \) বিন্দুতে অতিক্রম করে।

৫. আসমানটোট: সূচক ফাংশনের একটি আসমানটোট থাকে, যা \( y = 0 \) রেখার সমান্তরাল এবং এই রেখাকে ফাংশনের মান স্পর্শ করে না।


উদাহরণ

১. যদি \( f(x) = 2^x \) হয়, তবে এটি একটি বৃদ্ধি ফাংশন (Exponential Growth), কারণ \( b = 2 > 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

২. যদি \( f(x) = 0.5^x \) হয়, তবে এটি একটি ক্ষয় ফাংশন (Exponential Decay), কারণ \( 0 < b = 0.5 < 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

সূচক ফাংশনের ব্যবহার

সূচক ফাংশন বাস্তব জীবনের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • বৃদ্ধি: জনসংখ্যা বৃদ্ধি, ব্যাঙ্কে সুদের হিসাব, এবং বিনিয়োগের বৃদ্ধি।
  • ক্ষয়: তেজস্ক্রিয় ক্ষয়, ঔষধের ক্ষয়, এবং তাপীয় ক্ষয়।
  • গণনা: কম্পিউটারে লজিক্যাল অপারেশন এবং সংকেত বিশ্লেষণেও সূচক ফাংশন ব্যবহার করা হয়।

সূচক ফাংশনের মাধ্যমে বিভিন্ন পরিবর্তনশীল গাণিতিক সমস্যা এবং চক্রাকার ঘটনাগুলোকে বিশ্লেষণ করা সহজ হয়।

টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion