একটি ভেক্টরকে i, j, k দ্বারা প্রকাশ

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK
21
21

একটি ভেক্টরকে \( i \), \( j \), এবং \( k \) দ্বারা প্রকাশ করার জন্য আমরা ত্রিমাত্রিক স্থান (3D space) ব্যবহার করি, যেখানে \( x \), \( y \), এবং \( z \) তিনটি ভিন্ন দিক নির্দেশ করে। এই তিনটি দিক বরাবর ভেক্টরের উপাদানগুলো \( i \), \( j \), এবং \( k \) একক ভেক্টর হিসেবে কাজ করে।


ভেক্টর প্রকাশের নিয়ম

ধরা যাক, \( \vec{A} \) একটি ত্রিমাত্রিক ভেক্টর, যার উপাদান হলো \( x \), \( y \), এবং \( z \)। তাহলে, ভেক্টর \( \vec{A} \) কে প্রকাশ করা যাবে:

\[
\vec{A} = x i + y j + z k
\]

এখানে:

  • \( x \): ভেক্টরের \( x \)-অক্ষ বরাবর মান,
  • \( y \): ভেক্টরের \( y \)-অক্ষ বরাবর মান,
  • \( z \): ভেক্টরের \( z \)-অক্ষ বরাবর মান,
  • \( i \): \( x \)-অক্ষ বরাবর একক ভেক্টর,
  • \( j \): \( y \)-অক্ষ বরাবর একক ভেক্টর,
  • \( k \): \( z \)-অক্ষ বরাবর একক ভেক্টর।

উদাহরণ

ধরা যাক, একটি ভেক্টর \( \vec{A} \) এর \( x \)-অক্ষ বরাবর মান \( 3 \), \( y \)-অক্ষ বরাবর মান \( 4 \), এবং \( z \)-অক্ষ বরাবর মান \( 5 \)। তাহলে ভেক্টর \( \vec{A} \) হবে:

\[
\vec{A} = 3i + 4j + 5k
\]


বিশ্লেষণ

  • মান (Magnitude): ভেক্টরটির মান (ম্যাগনিটিউড) নির্ণয় করতে হলে, আমরা \( \sqrt{x^2 + y^2 + z^2} \) সূত্রটি ব্যবহার করতে পারি। এই উদাহরণে:
    \[
    |\vec{A}| = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{9 + 16 + 25} = \sqrt{50} = 7.07 (প্রায়)
    \]
  • দিক (Direction): \( i \), \( j \), এবং \( k \) এর মান দ্বারা আমরা ভেক্টরটির নির্দিষ্ট দিক নির্দেশ করতে পারি।

সারাংশ

\( i \), \( j \), এবং \( k \) এর মাধ্যমে একটি ভেক্টরকে দ্বিমাত্রিক বা ত্রিমাত্রিক জগতে প্রকাশ করা যায়। \( i \) হল \( x \)-অক্ষ বরাবর, \( j \) হল \( y \)-অক্ষ বরাবর, এবং \( k \) হল \( z \)-অক্ষ বরাবর একক ভেক্টর, যা ভেক্টরের দিক এবং মান প্রদর্শনে সাহায্য করে।

Promotion