আমরা জানি প্রত্যেক বস্তু যে অবস্থায় আছে সেই অবস্থা বজায় রাখতে চায় অর্থাৎ বস্তু স্থির থাকলে স্থির থাকতে চায় আর গতিশীল থাকলে গতিশীল থাকতে চায়। বস্তুর এ ধর্মকে জড়তা বলে। বস্তুর এ অবস্থার পরিবর্তন ঘটাতে হলে বাইরে থেকে একটা কিছু প্রয়োগ করতে হয়।
বইটি তার অবস্থানের পরিবর্তন করছে অর্থাৎ বইটি গতিশীল হচ্ছে। তুমি যখন বস্তুটিকে ঠেলো বা টানো তখন তুমি বস্তুটির উপর কিছু একটা প্রয়োগ কর। সাধারণ ভাষায় বলতে গেলে এই ঠেলা (Push) এবং টানাই (Pull) হচ্ছে বল। তোমার হাত ও বস্তুর প্রত্যক্ষ সংস্পর্শের ফলশ্রুতি হচ্ছে বল। কোনো বস্তুর ওপর প্রযুক্ত বল হচ্ছে ঐ বস্তু এবং অন্য কোনো বস্তুর পারস্পরিক ক্রিয়ার ফল। কোনো বস্তুর পরিপার্শ্ব যা অন্যান্য বস্তুর সমন্বয়ে গঠিত, ঐ বস্তুর ওপর বল প্রয়োগ করে যেমন, তুমি যদি কোনো বইকে হাত দিয়ে ধরে রাখ, তাহলে বইয়ের পরিবেশের গুরুত্বপূর্ণ বস্তুগুলো হচ্ছে তোমার হাত, যা বইটির ওপর ঊর্ধ্বমুখী বল প্রয়োগ করে; এবং পৃথিবী যা বইটির ওপর নিম্নমুখী বল প্রয়োগ করে (বই-এর ওজন)।
আমাদের সাধারণ অভিজ্ঞতা বলে কোনো কিছু ঠেলতে বা টানতে, বহন করতে বা নিক্ষেপ করতে বলের প্রয়োজন হয়। আমরা আমাদের নিজের উপরও বলের প্রভাব অনুভব করতে পারি যখন কেউ আমাদেরকে ধাক্কা দেয় বা কোনো গতিশীল বস্তু আমাদেরকে আঘাত করে অথবা মেলার মাঠে যখন আমরা কোনো নাগরদোলায় চড়ে বসি। এসবই হচ্ছে বলের স্বজ্ঞামূলক ধারণা।
বলের স্বজ্ঞামূলক ধারণা থেকে প্রকৃত বৈজ্ঞানিক ধারণায় উপনীত হওয়া কিন্তু খুব সহজে হয়নি। অ্যারিস্টটলের মতো প্রাচীন বিজ্ঞ চিন্তাবিদদেরও বল সম্পর্কে অনেক ভ্রান্ত ধারণা ছিল। বল সংক্রান্ত প্রথম বৈজ্ঞানিক ধারণার অবতারণা করেন গ্যালিলিও। স্যার আইজ্যাক নিউটনের গতি বিষয়ক সূত্রাবলি থেকেই বল সংক্রান্ত সঠিক বৈজ্ঞানিক ধারণা পাওয়া যায়। মহাকর্ষ বলের সূত্রের সাহায্যে তিনি বল সম্পর্কে একটি পরিপূর্ণ বৈজ্ঞানিক ধারণা দেন।
স্থূল জগতে আমরা মহাকর্ষ বল ছাড়াও আরো নানা রকম বলের সাথে পরিচিত হই, যেমন পেশি শক্তি, দুটি বস্তুর মধ্যকার স্পর্শ বল যেমন ঘর্ষণ বল, সঙ্কুচিত বা প্রসারিত স্প্রিং কর্তৃক প্রযুক্ত বল, টানা তার বা সুতার উপর বল, কঠিন বস্তু যখন প্রবাহীর সংস্পর্শে থাকে তখন প্লবতা বা সান্দ্র বল, প্রবাহীর চাপের কারণে বল বা তরলের পৃষ্ঠটানজনিত বল ইত্যাদি। দুটি বস্তু পরস্পরের সংস্পর্শে না থাকলেও বল ক্রিয়াশীল হতে পারে, যেমন মহাকর্ষ বল, বা দুটি আহিত বস্তুর মধ্যকার বল। সূক্ষ্ম জগতে আমরা প্রোটন ও নিউট্রনের মধ্যে নিউক্লিয় বল, আন্তঃপারমাণবিক বা আন্তঃআণবিক বলের কথাও আমরা জানি ।
সাধারণ অভিজ্ঞতার আলোকে বলের নিম্নোক্ত চারটি বৈশিষ্ট্য উল্লেখ করা যায়।
যেহেতু টানা বা ঠেলার মান ও দিক উভয়ই আছে, তাই বল একটি ভেক্টর রাশি। বলের দিক টানা বা ঠেলার দিকে।
যদি A বস্তু B বস্তুর ওপর একটি বল প্রয়োগ করে, তাহলে B বস্তুও A বস্তুর ওপর একটি বল প্রয়োগ করে।
যখন কোনো ক্রিকেট ব্যাট দিয়ে ক্রিকেট বলকে আঘাত করা হয়, তখন ব্যাটটি ক্রিকেট বলের ওপর একটি বল প্রয়োগ করে। ক্রিকেট বলটিও কিন্তু ব্যাটের ওপর একটি বল প্রয়োগ করে।
যখন তুমি ফুটবলকে কিক্ কর, তখন তোমার পা ফুটবলটির সংস্পর্শে থাকা অবস্থায় তার উপর বল প্রয়োগ করে তার বেগের পরিবর্তন ঘটায়।
আমরা যখন কোনো রাবারের টুকরা বা স্প্রিং-এর দুই প্রান্ত ধরে টান দেই অর্থাৎ বল প্রয়োগ করি, তখন তা বিকৃত হয় ।
Fundamental Force
বিংশ শতাব্দীর পদার্থবিজ্ঞানের গুরুত্বপূর্ণ অন্তর্জান বা উপলব্ধি হচ্ছে যে ইতোপূর্বে আমরা যে সকল বলের উল্লেখ করেছি। এবং আরো অনুল্লেখিত যে অসংখ্য বল রয়েছে সেগুলো কোনোটিই কিন্তু স্বাধীন বা মৌলিক নয়। এগুলোর উদ্ভব প্রকৃতির চারটি মৌলিক বল এবং তাদের মধ্যকার ক্রিয়া প্রতিক্রিয়া বা মিথস্ক্রিয়া বা অন্তক্রিয়া (Interaction) থেকে।
এ মৌলিক বলগুলো হলো :
ভরের কারণে মহাবিশ্বের যেকোনো দুটি বস্তুর মধ্যকার পারস্পরিক আকর্ষণ বলকে মহাকর্ষ বলে। কোনো বস্তুর ওজন হচ্ছে মহাকর্ষ বলের ফলশ্রুতি। যদিও স্থল বস্তুগুলোর মধ্যকার মহাকর্ষ বল খুবই তাৎপর্যপূর্ণ হতে পারে, কিন্তু চারটি মৌলিক বলের মধ্যে মহাকর্ষ বল হচ্ছে দুর্বলতম বল । অবশ্য এ কথাটি প্রযোজ্য হয় মৌলিক কণাগুলোর পারস্পরিক বল বিবেচনা করে তাদের আপেক্ষিক সবলতার বিচারে। যেমন, কোনো হাইড্রোজেন পরমাণুতে ইলেকট্রন ও প্রোটনের মধ্যকার মহাকর্ষ বল হচ্ছে 3.6 x 10-17 N; অপরপক্ষে এই কণা দুটির মধ্যকার স্থির তড়িৎ বল হচ্ছে 8.2 x 10-8 N। এখানে আমরা দেখি যে, স্থির তড়িৎ বলের তুলনায় মহাকর্ষ বল তাৎপর্যপূর্ণ নয় ।
মহাকর্ষ একটি সার্বজনীন বল। এ মহাবিশ্বের প্রত্যেক বন্ধুই অন্য বস্তুর কারণে এ বল অনুভব করে। এ বলের পাল্লা হচ্ছে অসীম। ভূ-পৃষ্ঠের সকল বস্তুই পৃথিবীর কারণে এ বল অনুভব করে। মহাকর্ষ বল সুনির্দিষ্টভাবে পৃথিবীর চারদিকে চাঁদের বা বিভিন্ন কৃত্রিম উপগ্রহের ঘূর্ণন, সূর্যের চারদিকে পৃথিবীর বা বিভিন্ন গ্রহের গতিকে নিয়ন্ত্রণ করে থাকে। নক্ষত্র, গ্যালাক্সি বা নক্ষত্রপুঞ্জ গঠনেও মহাকর্ষ বল গুরুত্বপূর্ণ ভূমিকা রাখে। বিজ্ঞানীরা ধারণা করেন যে বস্তুদ্বয়ের মধ্যে গ্রাভিটন নামে এক প্রকার কণার পারস্পরিক বিনিময়ের দ্বারা এই বল ক্রিয়াশীল হয়। অবশ্য অভিটনের অস্তিত্বের কোনো প্রমাণ এখনো পাওয়া যায়নি।
দুটি আহিত কণা তাদের আধানের কারণে একে অপরের ওপর যে আকর্ষণ বা বিকর্ষণ বল প্রয়োগ করে তাকে তাড়িতচৌম্বক বল বলে। তড়িৎ বল এবং চৌম্বক বল ঘনিষ্ঠভাবে সম্পর্কিত। যখন দুটি আহিত কণা স্থির থাকে তখন তাদের ওপর কেবল তড়িৎ বল ক্রিয়া করে। যখন আহিত কণাগুলো গতিশীল থাকে তখনকার একটি অতিরিক্ত তড়িৎ বল হচ্ছে চৌম্বক বল।
সাধারণভাবে তড়িৎ প্রভাব ও চৌম্বক প্রভাব অবিচ্ছেদ্য সে কারণে বলটিকে তাড়িতচৌম্বক বল নামে অভিহিত করা হয়। মহাকর্ষ বলের ন্যায় তাড়িতচৌম্বক বলের পাল্লাও অসীম পর্যন্ত বিস্তৃত এবং এ বলের ক্রিয়ার জন্য কোনো মাধ্যমেরও প্রয়োজন হয় না। তাড়িতচৌম্বক বল মহাকর্ষ বলের চেয়ে অনেক বেশি শক্তিশালী। উদাহরণস্বরূপ দুটি প্রোটনের মধ্যকার তাড়িতচৌম্বক বল এদের মধ্যকার মহাকর্ষ বলের চেয়ে 1036 গুণ বেশি।
আমরা জানি পদার্থ ইলেকট্রন, প্রোটন নামক আহিত কণা দিয়ে গঠিত। যেহেতু তাড়িতচৌম্বক বল মহাকর্ষ বলের চেয়ে অনেক বেশি শক্তিশালী তাই পারমাণবিক ও আণবিক ক্ষেত্রের সকল ঘটনা এই বল দ্বারাই নিয়ন্ত্রিত হয়। অবশ্য অন্য দুটি বল কেবলমাত্র নিউক্লিয় ক্ষেত্রে প্রযোজ্য। তাই বলা যায়, অণুপরমাণুর গঠন, রাসায়নিক বিক্রিয়া, পদার্থের তাপীয় ও অন্যান্য ধর্ম তাড়িতচৌম্বক বলের ফল। লক্ষণীয় যে, আমাদের এই স্থল জগতের যাবতীয় বলসমূহ (মহাকর্ষ বল ব্যতীত) তড়িৎ বলের বহিঃপ্রকাশ। ঘর্ষণ বল, স্পর্শ বল, স্প্রিং বা অন্যান্য বিকৃত বস্তুর মধ্যকার বল আহিত কণাগুলোর তড়িৎ বলেরই ফলশ্রুতি। ফোটন নামক এর প্রকার ভরহীন ও আধানহীন কণার পারস্পরিক বিনিময়ের ফলে এই বল কার্যকর হয়। মহাকর্ষ বল সর্বদা আকর্ষণধর্মী । পক্ষান্তরে তাড়িতচৌম্বক বল আকর্ষণ বিকর্ষণ উভয়ধর্মী হতে পারে। আবার কোনো বস্তুর ভর কেবলমাত্র ধনাত্মক হতে পারে কিন্তু আধান ধনাত্মক বা ঋণাত্মক উভয় হতে পারে। বেশিরভাগ ক্ষেত্রে পদার্থ তড়িৎ নিরপেক্ষ অর্থাৎ ব্যাপকভাবে তড়িৎ বল শূন্য জার সকল জাগতিক ঘটনা মহাকর্ষ বল দ্বারাই নিয়ন্ত্রিত হয় ।
সবল নিউক্লিয় বল প্রোটন ও নিউট্রনকে নিউক্লিয়াসে আবদ্ধ রাখে। এটা স্পষ্ট যে, কোনো ধরনের আকর্ষণীয় বল না থাকলে প্রোটনসমূহের মধ্যকার বিকর্ষণী বলের কারণে নিউক্লিয়াস অস্থিতিশীল হয়ে যেতো। এ আকর্ষণী বল মহাকর্ষীয় বল হতে পারে না কারণ তড়িত বলের তুলনায় মহাকর্ষীয় বল অতি অকিঞ্চিতকর। সুতরাং নিউক্লিয়াসের স্থায়িত্বের জন্যে একটি নতুন বলের প্রয়োজন হয় আর সেই বলই হচ্ছে সবল নিউক্লিয় বল যা সকল মৌলিক বলগুলোর মধ্যে সর্বাপেক্ষা শক্তিশালী। তাড়িতচৌম্বক বল থেকে এটি প্রায় 100 গুণ বেশি শক্তিশালী। এটি আধান নিরপেক্ষ এবং এটি সমানভাবে প্রোটন- প্রোটন, নিউট্রন-নিউট্রন এবং প্রোটন-নিউট্রনের মধ্যে বোসন কণার পারস্পরিক বিনিময়ে কার্যকর হয়। পরবর্তীতে দেখা যায় প্রোটন ও নিউট্রন উভয়ই কোয়ার্ক নামক আরো মৌলিক কণিকা দিয়ে গঠিত আর কোয়া কণিকাগুলো প্রান নামে এক ধরনের আঠালো কণার পারস্পরিক বিনিময়ের ফলে উৎপন্ন তীব্র বলের প্রভাবে একত্রিত থাকে। এর পারা অত্যন্ত কম, প্রায় নিউক্লিয়াসের ব্যাসার্ধের সমতুল্য অর্থাৎ প্রায় 10-15 m এ বল নিউক্লিয়াসের স্থায়িত্বের নিয়ামক। উল্লেখ্য যে, ইলেকট্রনের মধ্যে এ ধরনের কোনো বল নেই।
দুর্বল নিউক্লিয় বলের উদ্ভব হয় যখন কোনো নিউক্লিয়াস থেকে রশ্মির নির্গমন ঘটে। রশ্মির নির্গমনের সময় নিউক্লিয়াস থেকে একটি ইলেকট্রন এবং একটি অনাহিত কণা নিউট্রিনো (neutrino) নির্গত হয়। দুর্বল নিউক্লিয় বল মহাকর্ষ বলের ন্যায় অত দুর্বল নয় তবে সবল নিউক্লিয় বল ও তাড়িতচৌম্বক বলের চেয়ে অনেকটাই দুর্বল। এ বলের পাল্লা খুবই কম প্রায় 10-16m থেকে 10-18 m বিজ্ঞানীরা ধারণা করেন গেজ বোসন কণার পারস্পরিক বিনিয়োগের ফলে এই বল কার্যকর হয়।
সকল মৌলিক বলের জন্য বাহক কণিকা প্রয়োজন। তাড়িতচৌম্বক বলের জন্য এরকম বাহক কণিকা হচ্ছে ফোটন। এর অস্তিত্ব আমরা গত শতকের গোড়াতেই জানতে পেরেছি। সবল নিউক্লিয় বলের জন্য বাহক কণিকা হচ্ছে গুঅন (gluon)। মহাকর্ষ বলের জন্যও একটি বাহক কণিকা গ্রাভিটনের (graviton) প্রস্তাব করা হয়েছে। যদিও এখনো পর্যন্ত এর অস্তিত্বের কোনো প্রমাণ পাওয়া যায়নি। আর দুর্বল নিউক্লিয় বলের জন্য বাহক কণিকাগুলো হচ্ছে W+, W এবং Z বোসন যা গেজ বোসন (gauge boson) নামেও পরিচিত।
প্রত্যেক বস্তু যে অবস্থায় আছে সেই অবস্থায় থাকতে চায় অর্থাৎ বস্তু স্থির থাকলে স্থির থাকতে চায় আর গতিশীল থাকলে গতিশীল থাকতে চায়। বস্তুর এই স্থিতিশীল বা গতিশীল অবস্থার পরিবর্তন ঘটাতে হলে বল প্রয়োগ করতে হয়। পদার্থের নিজস্ব অবস্থা বজায় রাখতে চাওয়ার এই যে ধর্ম তাই জড়তা।
ভর (mass) হচ্ছে পদার্থের জড়তার পরিমাপ। অন্য কথায় কোনো একটি বস্তুর তার বেগের পরিবর্তনকে বাধা দেয়ার পরিমাপই হচ্ছে ভর। একটি চলমান খালি ভ্যান গাড়িকে থামানোর চেয়ে ইট বোঝাই চলমান ভ্যান গাড়িকে থামানো অনেক বেশি কষ্টকর। খালি ভ্যানের চেয়ে ইট ও ভ্যানের মিলিত ভর বেশি বলেই এটি ঘটে। ভর একটি স্কেলার রাশি এবং একাধিক ভরকে সাধারণ গাণিতিক নিয়মে যোগ করা যায়।
১৬৮৭ সালে স্যার আইজ্যাক নিউটন তাঁর অমর গ্রন্থ “ন্যাচারালিস ফিলোসোফিয়া প্রিন্সিপিয়া ম্যাথেমেটিকা”তে বস্তুর ভর, গতি ও বলের মধ্যে সম্পর্ক স্থাপন করে তিনটি সূত্র প্রকাশ করেন। এ তিনটি সূত্র নিউটনের গতি সূত্র নামে পরিচিত।
এ সূত্রকে অনেক সময় জড়তার সূত্র বলা হয়। কেননা, “জড়তা" মানেই হচ্ছে কোনো পরিবর্তনকে বাধা দেওয়া। আর এ সূত্র থেকে পাওয়া যায় কোনো বস্তু তার যে বেগ আছে (শূন্য বেগসহ) সেই বেগ বজায় রাখতে চায়।
যদি কোনো বস্তু স্থির থাকে বা সমদ্রুতিতে সরল পথে চলে, তাহলে তার ত্বরণ শূন্য হয়। তাই প্রথম সূত্রকে নিম্নোক্তভাবে প্রকাশ করা যেতে পারে "যদি কোনো বস্তুর ওপর বল প্রয়োগ করা না হয়, তাহলে তার ত্বরণ শূন্য হয়।” যেহেতু বল হচ্ছে একটি ভেক্টর রাশি, তাই দুই বা ততোধিক বল সংযুক্ত হয়ে নিট (net) শূন্য বল প্রদান করতে পারে। কোনো বস্তুর ওপর প্রযুক্ত নিট বল হচ্ছে বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলোর ভেক্টর সমষ্টি। কোনো বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলো যদি যথাক্রমে ইত্যাদি হয় তাহলে নিট বল হবে
নিট বল শূন্য হওয়া আর কোনো বল ক্রিয়া না করা একই কথা। নিউটনের প্রথম সূত্রে এ তথ্য ব্যবহার করে আমরা সূত্রটিকে বিবৃত করতে পারি,
“যদি কোনো বস্তুর ওপর নিট বল শূন্য হয়, তাহলে বস্তুটির ত্বরণও শূন্য হবে ।
ধরা যাক, দুটি বস্তু ধাক্কা খেল। ধাক্কার পর বস্তুগুলো কোন দিকে যাবে—এটি কিসের দ্বারা নির্ধারিত হবে? কোনটি বড়, কোনটি ছোট অর্থাৎ তাদের ভর দ্বারা কোনটি বেশি দ্রুত চলছে, কোনটি কম দ্রুত চলছে অর্থাৎ তাদের বেগ দ্বারা ? কোনটি বেশি গুরুত্বপূর্ণ -ভর না বেগ? বস্তুগুলো কোন দিকে যাবে কীভাবে তা নির্ণয় করা হয়। এ সকল প্রশ্নের জবাবের জন্য ভরবেগের ধারণা অত্যন্ত গুরুত্বপূর্ণ। আমরা আমাদের অভিজ্ঞতা থেকে দেখতে পাই, একটি গতিশীল টেবিল টেনিস বলকে থামানোর চেয়ে একটি গতিশীল ট্রাককে থামানো অনেক কঠিন। কোনো গতিশীল বস্তুকে আমরা যদি থামাতে চাই তাহলে আমরা যে প্রতিবন্ধকতার সম্মুখীন হই তার একটি পরিমাপ হচ্ছে ভরবেগ। ভরবেগ হচ্ছে বস্তুর একটি ধর্ম যা বস্তুর ভর এবং বেগের সাথে সম্পর্কিত। বস্তুর ভর যত বেশি হবে এবং বস্তু যত দ্রুত চলবে তার ভরবেগও তত বেশি হবে।
ব্যাখ্যা : কোনো বস্তুর ভর m এবং বেগ হলে তার ভরবেগ
… (4.1)
এই বেগ বলতে আমরা আসলে বুঝি রৈখিক বেগ যা বস্তুর চলন গতির সাথে সংশ্লিষ্ট। এটি কৌণিক বেগ থেকে সম্পূর্ণ ভিন্ন। তাই এই রৈখিক বেগ এর সাথে সংশ্লিষ্ট ভরবেগকে রৈখিক ভরবেগ বলা হয়, যা ঘূর্ণন গতির সাথে সংশ্লিষ্ট কৌণিক ভরবেগ থেকে আলাদা। সুতরাং অন্য কোনোভাবে উল্লেখ না থাকলে পদার্থবিজ্ঞানের পরিভাষায় আমরা ভরবেগ বলতেই বুঝি রৈখিক ভরবেগ ।
যেহেতু বেগ একটি ভেক্টর রাশি, কাজেই ভরবেগও একটি ভেক্টর রাশি। এর দিক বেগের দিকে।
মাত্রা ও একক : ভরবেগের মাত্রা হলো ভর x বেগের মাত্রা অর্থাৎ MLT-1 এবং একক হলো ভরের একক x বেগের একক অর্থাৎ kg ms-1
বেগের সম্পর্ক প্রতিপাদন
ধরা যাক, কোনো বস্তুর ভর m, বেগ এবং ভরবেগ এর ওপর বল প্রযুক্ত হলে এর ভরবেগের পরিবর্তন ঘটে । নিউটনের গতির দ্বিতীয় সূত্রানুসারে, বস্তুর ভরবেগের পরিবর্তনের হার তার ওপর প্রযুক্ত বলের ( ) এর সমানুপাতিক অর্থাৎ,
বা,
বা,
বা,
এখানে K হচ্ছে একটি সমানুপাতিক ধ্রুবক। এর মান রাশিগুলোর এককের ওপর নির্ভর করে। এসআই পদ্ধতিতে বলের একক নিউটনের সংজ্ঞা এমনভাবে দেওয়া হয় যাতে K এর মান l হয়।
যখন m= 1kg এবং a 1 ms-2 তখন
F = 1N ধরলে উপরিউক্ত সমীকরণের K = 1 হয়। সুতরাং নিউটনের সংজ্ঞা হলো, “যে পরিমাণ বল 1 kg ভরের কোনো বস্তুর ওপর ক্রিয়া করে 1 ms-2 ত্বরণ সৃষ্টি করে তাকে 1 N বলে।”
অর্থাৎ 1 N = 1kg ms-2
অতএব, ... (4.2)
বা, বল = ভর ত্বরণ
(4.2) সমীকরণের সাহায্যে আমরা বল পরিমাপ করতে পারি। ভর ও ত্বরণের গুণফল দ্বারা বল পরিমাপ করা হয়।
নিউটনের দ্বিতীয় সূত্র বলের সংজ্ঞা প্রদান করে-যা কোনো বস্তুতে ত্বরণ সৃষ্টি করে তাই হচ্ছে বল। কোনো একটি বস্তুর ওপর যদি কেবলমাত্র একটি বলই ক্রিয়া করে, তাহলে জ্বরণের অভিমুখ হবে বলের অভিমুখে এবং ত্বরণের মান হবে বলের মানের সমানুপাতিক।
কোনো বস্তুর ওপর যদি একাধিক বল প্রযুক্ত হন। তাহলে বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলোর ভেক্টর সমষ্টিকে নিট (net) বল বলে। কোনো বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলো যদি হয় যথাক্রমে ইত্যাদি, তাহলে নিট বল হবে,
= (4.2)
সুতরাং সে ক্ষেত্রে নিউটনের গতির দ্বিতীয় সূত্র তথা বল ও ত্বরণের সম্পর্কের (4-2 সমীকরণ) রূপ হয়,
=... (4.3)
সুতরাং নিউটনের দ্বিতীয় সূত্রকে এভাবেও বিবৃত করা যায়, “কোনো বস্তুর ত্বরণ বস্তুর ওপর প্রযুক্ত নিট বলের সমানুপাতিক।”
(4.3) সমীকরণে বস্তুর ভর m হচ্ছে বস্তুর ত্বরণ ও প্রযুক্ত নিউরনের মধ্যকার সমানুপাতিক ধ্রুবক। একটি নির্দিষ্ট নিট বলের জন্য বেশি ভরের বস্তুর ত্বরণ কম হয়। সুতরাং বস্তুর ভর হচ্ছে বস্তুর সেই ধর্ম যা বস্তুর বেগের কোনো পরিবর্তনকে বাধা দান করে। যেহেতু জড়তার অর্থ হচ্ছে কোনো পরিবর্তনকে বাধা দেওয়া, কাজেই এই ভরকে অনেক সময় জড়তাত্তর বা জাডা (inertial mass) বলা হয়।
মাত্রা (4.2) সমীকরণ থেকে দেখা যায় যে, বলের মাত্রা হবে MLT-2
চলন গতির ক্ষেত্রে আমরা দেখেছি m ভরের কোনো বস্তু বেগে গতিশীল হলে তার ভরবেগ তথা রৈখিক ভরবেগ = m V, একটি গুরুত্বপূর্ণ রাশি। ঘূর্ণনগতির ক্ষেত্রে ভরবেগের অনুরূপ রাশি হচ্ছে কৌণিক ভরবেগ। কোনো বিন্দুর সাপেক্ষে ভরবেগের ভ্রামকই হচ্ছে কণাটির কৌণিক ভরবেগ ।
চলন গতিতে রৈখিক ত্বরণের সাথে যেমন বল সংশ্লিষ্ট ঘূর্ণন গতিতে তেমনি কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি হলো টর্ক (torque) বা বলের ভ্রামক (moment of force)।
কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি যে বল নয়, তা আমরা আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই দেখতে পাই। কোনো দরজার উপর প্রযুক্ত বল বিভিন্ন কৌণিক ত্বরণ সৃষ্টি করতে পারে—এটি নির্ভর করে বল কোথায় প্রয়োগ করা হয়েছে আর কোন দিকে প্রয়োগ করা হয়েছে তার উপর। দরজার কবজার উপর সরাসরি প্রযুক্ত বল কোনো কৌণিক ত্বরণই সৃষ্টি করে না, আবার সেই একই মানের বল যদি দরজার বাইরের প্রাপ্তে দরজার সাথে লম্বভাবে প্রয়োগ করা হয়, তাহলে সর্বোচ্চ কৌণিক ত্বরণ সৃষ্টি করে থাকে। সুতরাং দরজার এ ঘূর্ণন প্রক্রিয়া নির্ভর করে প্রযুক্ত বলের মান, ঘূর্ণন অক্ষ থেকে বলের প্রয়োগ বিন্দুর দূরত্ব আর কত কোণে বল প্রয়োগ করা হয়েছে তার উপর। এ সকল রাশি মিলিয়ে ঘূর্ণন গতির ক্ষেত্রে আমরা যে রাশির সংজ্ঞা দেই তাই হচ্ছে টর্ক। টর্ক হচ্ছে একটি বলের ঘূর্ণন সৃষ্টি করার সামর্থ্যের একটি পরিমাপ।
ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> এবং ঐ কণার উপর প্রযুক্ত বল হলে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> ঐ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক হচ্ছে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>π</mi><mo>→</mo></mover></math> = <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> × <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> (4.34)
ঘূর্ণন কেন্দ্র থেকে । দূরত্বে কোনো কণার উপর F বল প্রযুক্ত হলে ঐ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামকের মান π হলো
বা,
এখানে হচ্ছে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর অন্তর্ভুক্ত কোণ।
কিন্তু r sin হচ্ছে ঘূর্ণন কেন্দ্র থেকে বলের ক্রিয়ারেখার লম্ব দূরত্ব (চিত্র : ৪.১৯)। সুতরাং কোনো কণার উপর প্রযুক্ত বল এবং ঘূর্ণন কেন্দ্ৰ থেকে বলের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ কেন্দ্রের সাপেক্ষে টর্ক বা বলের ভ্রামকের মান।
টর্ক একটি ভেক্টর রাশি। এর দিক <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> x <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর দিকে। একটি ডানহাতি স্কুকে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> ও <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর সমতলে লম্বভাবে স্থাপন করে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>r</mi><mo>→</mo></mover></math> থেকে <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover></math> এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।
টর্কের মাত্রা হচ্ছে বল × দূরত্বের মাত্রা অর্থাৎ ML2T-2 এবং একক হচ্ছে Nm।
কোনো দৃঢ় বস্তুর টর্ক 20 N m বলতে বোঝায়, যে পরিমাণ টর্ক 1 kg m2 জড়তার ভ্রামক বিশিষ্ট বস্তুতে 20 rad s-1 কৌণিক ত্বরণ সৃষ্টি করে ।
বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর ক্ষেত্রে টর্ক হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।
ধরা যাক, কোনো একটি দৃঢ় বস্তুর উপর F বল প্রয়োগ করায় বস্তুটি কোনো একটি অক্ষের সাপেক্ষে সমকৌণিক ত্বরণে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m1, ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r1 এবং কণাটির ত্বরণ হলে-
ঘূর্ণন অক্ষের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক = Fr1
= m1 a1 r1
= m1 r12
= m1 r12
অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m2 ভরের কণাটির উপর প্রযুক্ত টর্ক = m2r22 । এভাবে প্রতিটি বস্তুকণার উপর প্রযুক্ত টর্ক বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির বলের ভ্রামক বা টর্ক π পাওয়া যাবে।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><mo>=</mo><mi>α</mi><mo> </mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mo>+</mo><mi>α</mi><mo> </mo><msub><mi>m</mi><mn>2</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>2</mn></msub><mo>+</mo><mi>α</mi><mo> </mo><msub><mi>m</mi><mn>3</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>3</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mspace linebreak="newline"/><mo>=</mo><mi>α</mi><mo> </mo><mo>(</mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>2</mn></msub><mo>+</mo><msub><mi>m</mi><mn>3</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>3</mn></msub><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>)</mo><mspace linebreak="newline"/><mo>=</mo><mi>α</mi><mo> </mo><mo>∑</mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mspace linebreak="newline"/><mo>=</mo><mi>α</mi><mi>I</mi><mo> </mo><mo>[</mo><mo>:</mo><mi>I</mi><mo>=</mo><mo> </mo><mo>∑</mo><msub><mi>m</mi><mn>1</mn></msub><msub><msup><mi>r</mi><mn>2</mn></msup><mn>1</mn></msub><mo>]</mo><mspace linebreak="newline"/></math>
এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক।
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>π</mi><mo>=</mo><mi>I</mi><mi>α</mi><mo>=</mo><mi>I</mi><mfrac><mrow><mi>d</mi><mi>ω</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></math>
:- টর্ক = জড়তার ভ্রামক x কৌণিক ত্বরণ
৪.২০ চিত্রে একটি দৃঢ় বস্তুর A ও B বিন্দুতে দুটি সমান, সমান্তরাল ও বিপরীতমুখী বল F, F প্রয়োগ করা হলো।
এ দুটি বল মিলে একটি দ্বন্দ্ব তৈরি হয়। বলদ্বয়ের ক্রিয়া রেখার মধ্যবর্তী লম্ব দূরত্বকে দ্বন্দ্বের বাহু বলে । এখানে d দ্বন্দ্বের বাহু। যেকোনো একটি বল ও বলদ্বয়ের মধ্যবর্তী লম্ব দূরত্বের গুণফলের মানকে দ্বন্দ্বের ভ্রামক (moment of the couple) বলে।
৪.২০ চিত্রানুযায়ী দ্বন্দ্বের ভ্রামক,
C=F × AB=F × d
দ্বন্দ্বের ভ্রামককেও টর্ক বলে। এ জন্য এর একক হবে N m। যে দ্বন্দ্বের জন্য বস্তু ঘড়ির কাঁটার বিপরীত দিকে ঘুরতে চেষ্টা করে সে দ্বন্দ্বের ভ্রামককে ধনাত্মক এবং যে দ্বন্দ্বের জন্য বস্তু ঘড়ির কাঁটার দিকে ঘুরতে চেষ্টা করে সে দ্বন্দ্বের ভ্রামককে ঋণাত্মক ধরা হয়।
ঘূর্ণন গতি সংক্রান্ত নিউটনের গতির প্রথম সূত্র থেকে আমরা জানি, বাহ্যিক টর্ক যদি শূন্য হয়, তাহলে বস্তু সমকৌণিক বেগে ঘুরতে থাকবে। সময়ের সাপেক্ষে কৌণিক বেগ ধ্রুব হলে কৌণিক ভরবেগও ধ্রুব থাকে। অন্যকথায় কোনো বস্তুর উপর প্রযুক্ত টর্ক শূন্য হলে, বস্তুটির কৌণিক ভরবেগ সংরক্ষিত থাকে।
এ কথা বহু কণা সমন্বয়ে গঠিত একটি ব্যবস্থার (System) জন্যও প্রযোজ্য। একে কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণ সূত্র বলে।
কোনো অক্ষের সাপেক্ষে কোনো ব্যবস্থার জড়তার ভ্রামক I, ঐ অক্ষের সাপেক্ষে কৌণিক ভরবেগ L এবং ব্যবস্থার কৌণিক বেগ হলে,
একে সময়ের সাপেক্ষে অন্তরীকরণ করে আমরা পাই,
:-
কিন্তু প্রযুক্ত টর্ক π হলে,
:-
এখন π = 0 হলে
বা, L= ধ্রুবক
সুতরাং প্রযুক্ত টর্ক শূন্য হলে ব্যবস্থার কৌণিক ভরবেগ ধ্রুবক থাকে, অর্থাৎ সংরক্ষিত হয়। এটিই কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণ সূত্র ।
আমরা দেখতে পাই সাঁতারু ডাইভিং মঞ্চ থেকে যখন কোনো পুলে ডাইভ দেন তখন তার শরীরের অঙ্গভঙ্গির পরিবর্তন এমনভাবে হতে থাকে যে, তার জড়তার ভ্রামক ও কৌণিক বেগের পরিবর্তন হয়। কিন্তু যেহেতু বাইরে থেকে কোনো বল তথা টর্ক প্রযুক্ত বলা হয় না, তাই তার কৌণিক ভরবেগ ধ্রুব থাকে অর্থাৎ তার জড়তার ভ্রামক ও কৌণিক বেগের গুণফল সবসময় একই থাকে। ব্যালেরিনা ও জিমন্যাস্টের বেলায়ও ঠিক একই ঘটনা ঘটে (চিত্র ৪.২২)।
কৌণিক ভরবেগের নিত্যতার সূত্র একটি সার্বজনীন সূত্র। এ সূত্র পারমাণবিক ও নিউক্লিয় ক্ষেত্রে যেমন ঘটে, তেমনি নভোমণ্ডলীয় এবং আমাদের ইন্দ্রিয়গ্রাহ্য স্থল জগতের ক্ষেত্রেও প্রযোজ্য। অপরপক্ষে নিউটনীয় বলবিদ্যা পারমাণবিক ও নিউক্লিয় এলাকায় প্রযোজ্য হয় না। কাজেই নিউটনীয় বলবিদ্যার চেয়ে কৌণিক ভরবেগের এ নিত্যতার সূত্র অধিকতর মৌলিক। পারমাণবিক ও নিউক্লিয় পদার্থবিজ্ঞানে আমরা দেখি যে, ক্ষুদ্রাতিক্ষুদ্র কণাসমূহ যেমন ইলেকট্রন, প্রোটন, মেসন ও নিউট্রন ইত্যাদির স্বকীয় স্পিনের সাথে সংশ্লিষ্ট কৌণিক ভরবেগ রয়েছে। আরো রয়েছে তাদের কাক্ষিক গতির (orbital motion) সাথে সংশ্লিষ্ট কৌণিক ভরবেগ। আমরা যখন মোট কৌণিক ভরবেগের নিত্যতার নীতি ব্যবহার করি তখন আমাদের অবশ্যই এ মোট কৌণিক ভরবেগে স্পিন কৌণিক ভরবেগও অন্তর্ভুক্ত করতে হয়। একইভাবে নভোমণ্ডলীয় Pd ক্ষেত্রে সূর্য, নক্ষত্র, গ্রহ, উপগ্রহ ইত্যাদির ক্ষেত্রে কৌণিক ভরবেগে স্পিন কৌণিক ভরবেগ অন্তর্ভুক্ত করতে হয়। কৌণিক ভরবেগের নিত্যতা সৌর জগতের উৎস, অতিকায় নক্ষত্রের সংকোচন ও নভোমণ্ডলীয় বিভিন্ন সমস্যা সংক্রান্ত তথ্যাদি মূল্যায়নে মুখ্য ভূমিকা পালন করে। তাই কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণশীলতা নীতি একটি সার্বজনীন নীতি।
কোনো বস্তুর উপর বাইরে থেকে বল প্রয়োগ না করলে এর বেগের পরিবর্তন হয় না। আমরা জানি, কোনো বস্তুর বেগের দিকের লম্ব বরাবর বল প্রয়োগ করা হলে এর বেগের মানের কোনো পরিবর্তন হয় না, কিন্তু দিকের পরিবর্তন হয়। যেহেতু কোনো বস্তু বৃত্তাকার পথে সমদ্রুতিতে ঘুরার সময় এর বেগের মানের কোনো পরিবর্তন হয় না কিন্তু প্রতিনিয়ত দিক পরিবর্তিত হয়, কাজেই বৃত্তাকার পথে ঘুরার সময় বস্তুর বেগের দিকের সাথে লম্ব বরাবর প্রতিনিয়ত বল প্রযুক্ত হয়। বৃত্তের ব্যাসার্ধ হচ্ছে স্পর্শক তথা বেগের দিকের সাথে লম্ব; তাই বৃত্তাকার পথে ঘুরার সময় বস্তুর উপর ব্যাসার্ধ বরাবর কেন্দ্রের দিকে সব সময়ই একটি বল ক্রিয়া করে। এ বলকে কেন্দ্রমুখী বল বলা হয়।
বৃত্তাকার পথে সমদ্রুতিতে ঘূর্ণায়মান কোনো বস্তুর উপর প্রযুক্ত নিট বলকেই কেন্দ্রমুখী বল নামে অভিহিত করা হয়। এ বল কিন্তু আলাদা কোনো বল নয়। কোনো বস্তু তার ওজন বা কোনো সুতার টান বা কোনো ঘর্ষণ বল বা কোনো অভিলম্ব বল বা একাধিক বলের সমন্বয়ের প্রভাবে বৃত্তাকার পথে ঘুরে। কোনো বস্তুর উপর প্রযুক্ত নিট বল যদি বৃত্তাকার গতি উৎপন্ন করে তখন সেই নিট বল বা লব্ধি বলকেই কেন্দ্রমুখী বল বলা হয় ।
বস্তুকে বৃত্তাকার পথে ঘুরানোর জন্য নানাভাবে বল প্রয়োগ করা যেতে পারে। একটি সুতার এক প্রান্তে একটি ঢিল বেঁধে সুতার অন্য প্রান্ত আঙুলে ধরে যদি সমদ্রুতিতে ঘুরানো যায় তাহলে সুতার মধ্য দিয়ে আঙুলের দিকে ঢিলের উপর একটি বল প্রযুক্ত হবে। সুতার মধ্য দিয়ে বৃত্তাকার পথের কেন্দ্রের দিকে ঢিলটির উপর যে বল প্রযুক্ত হচ্ছে তাই হলো কেন্দ্রমুখী বল।
কেন্দ্রমুখী বল উৎপন্ন হওয়ার জন্য যে ঘূর্ণায়মান বস্তু আর ঘূর্ণন কেন্দ্রের মধ্যে সরাসরি সংযোগ থাকতে হবে এমন কোনো কথা নেই। যখনই কোনো বস্তু কোনো বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে গতিশীল হয় তখনই কেন্দ্রমুখী বল উৎপন্ন হয়। পৃথিবী সূর্যের চারদিকে বা চন্দ্র পৃথিবীর চারদিকে ঘুরার সময় কেন্দ্রমুখী বল লাভ করে। এ কেন্দ্রমুখী বল মহাকর্ষজনিত। এখানে বস্তু ও কেন্দ্রের মধ্যে সরাসরি কোনো সংযোগ নেই। আবার পরমাণুর ইলেকট্রনগুলো যখন নিউক্লিয়াসের চারদিকে ঘুরে তখন ইলেকট্রনগুলোতে কেন্দ্রমুখী বল উৎপন্ন হয়। এ বল তড়িৎ আধানের জন্য হয়ে থাকে। এখানে ইলেকট্রন ও নিউক্লিয়াসের মধ্যকার স্থির তড়িৎ আকর্ষণ বলই কেন্দ্রমুখী বল হিসেবে কাজ করে।
তৃতীয় অধ্যায়ে বৃত্তাকার গতির আলোচনায় আমরা r ব্যাসার্ধের বৃত্তের পরিধি বরাবর v সমদ্রুতিতে গতিশীল বস্তুর বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে কেন্দ্রমুখী ত্বরণ a প্রতিপাদন করেছি । সুতরাং m ভরের কোনো বস্তু r ব্যাসার্ধের বৃত্তাকার পথে v সমদ্রুতিতে ঘুরলে তার উপর ক্রিয়াশীল কেন্দ্রমুখী বল হবে,
কেন্দ্রমুখী বল = ভর x কেন্দ্রমুখী ত্বরণ
বা,
বস্তুটির কৌণিক বেগ ωহলো, v = ωr
:- F = mω2r
(4.38) সমীকরণকে ভেক্টররূপে লিখলে আমরা পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>F</mi><mo>→</mo></mover><mo>=</mo><mo>−</mo><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>r</mi><mo>=</mo><mo>−</mo><mi>m</mi><mo>(</mo><mover accent='true'><mi>ω</mi><mo>→</mo></mover><mo>.</mo><mover accent='true'><mi>ω</mi><mo>→</mo></mover><mo>)</mo><mover accent='true'><mi>r</mi><mo>→</mo></mover><mo>=</mo><mo>−</mo><mi>m</mi><mfrac><mrow><msup><mi>v</mi><mn>2</mn></msup></mrow><mrow><msup><mi>r</mi><mn>2</mn></msup></mrow></mfrac><mover accent='true'><mi>r</mi><mo>^</mo></mover><mo>.</mo><mo>.</mo><mo>.</mo></math>
এখানে – চিহ্ন থেকে দেখা যায় কেন্দ্রমুখী বলের দিক ব্যাসার্ধ ভেক্টর তথা অবস্থান ভেক্টরের বিপরীত দিকে অর্থাৎ ব্যাসার্ধ বরাবর কেন্দ্রের দিকে (চিত্র ৩.২৪)। সমীকরণ ( 4.38 ) থেকে দেখা যায় যে,
যেহেতু কেন্দ্রমুখী বল F = mω2r, সুতরাং দেখা যাচ্ছে কেন্দ্রমুখী বল ঘূর্ণায়মান বস্তুর কৌণিক বেগ ω এবং ঘূর্ণন অক্ষ বা কেন্দ্র থেকে দূরত্ব তথা ব্যাসার্ধ r এর উপর নির্ভর করে। কৌণিক বেগ ধ্রুব থাকলে কেন্দ্রমুখী বল ব্যাসার্ধের সমানুপাতিক ।
কেন্দ্রমুখী বলের জন্য বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে বস্তুর যে ত্বরণ হয় তাকে কেন্দ্রমুখী ত্বরণ বলে । সুতরাং কেন্দ্রমুখী ত্বরণ a হলো,
কেন্দ্রবিমুখী বল হচ্ছে কেন্দ্রমুখী বলের সমান ও বিপরীতমুখী। ক্রিয়া ও প্রতিক্রিয়া কোনো সময়ই একই বস্তুর উপর প্রযুক্ত হয় না। তাই কেন্দ্রমুখী বল ও কেন্দ্রবিমুখী বল দুটি ভিন্ন বস্তুর উপর প্রযুক্ত হয়। কেন্দ্রমুখী বল প্রযুক্ত হয় ঘূর্ণায়মান বস্তুর উপর এবং এর দিক হচ্ছে বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে। অপরপক্ষে কেন্দ্ৰবিমুখী বল প্রযুক্ত হয় বৃত্তাকার পথের কেন্দ্রের উপর যা ব্যাসার্ধ বরাবর কেন্দ্রের বাইরের দিকে ক্রিয়া করে।
মান : m ভরের কোনো বস্তু r ব্যাসার্ধের বৃত্তাকার পথে v
সমদ্রুতিতে ঘুরলে বৃত্তাকার পথের কেন্দ্রে অনুভূত কেন্দ্রবিমুখী বল হচ্ছে
সুতায় বাঁধা একটি ঢিলকে যখন বৃত্তাকার পথে ঘুরানো হয় তখন সুতা ঢিলটির উপর যে বল বৃত্তের কেন্দ্রের দিকে প্রয়োগ করে অর্থাৎ সুতার টানই হচ্ছে কেন্দ্রমুখী বল এবং সুতার মাধ্যমে আঙুলের উপর যে বল প্রযুক্ত হয় তা হচ্ছে কেন্দ্রবিমুখী বল (চিত্র ৪-২৩)।
তেমনি সৌরজগতে সূর্যকে কেন্দ্র করে আবর্তনরত গ্রহগুলোর উপর প্রযুক্ত মহাকর্ষ বল হচ্ছে কেন্দ্রমুখী বল, আর সূর্যের উপর প্রযুক্ত মহাকর্ষ বল হচ্ছে কেন্দ্রবিমুখী বল। আবার পরমাণুতে ঘূর্ণনরত ইলেকট্রনগুলোর উপর প্রযুক্ত স্থির তড়িৎ আকর্ষণ বল হচ্ছে কেন্দ্রমুখী বল। আর নিউক্লিয়াসের উপর ইলেকট্রনের দিকে প্রযুক্ত আকর্ষণ বল হচ্ছে কেন্দ্রবিমুখী বল।
১। পানি ভর্তি বালতির উল্লম্বতলে আবর্তন :
পানি ভর্তি একটি বালতিকে উগ্রত্বতলে জোরে ঘুরালে দেখা যাবে যে, বালতিটি যখন সর্বোচ্চ বিন্দুতে উপুড় হয়ে অবস্থান করে তখনও বালতি থেকে পানি পড়ে যায়। না। এর কারণ ঘূর্ণন গতির ফলে পানির উপর যে কেন্দ্রবিমুখ বল ক্রিয়া করে সর্বোচ্চ বিন্দুতে বালতি যখন উপুড় হয়ে যায় তখন সেটি ঊর্ধ্বমুখে ক্রিয়া করে পানির ওজনকে নাকচ করে, ফলে পানি পড়ে যায় না। (চিত্র নং ৪. ২৪ )
কোনো সাইকেল আরোহী বা কোনো দৌড়বিদকে যখন বাঁক নিতে হয় তখন সাইকেলসহ আরোহীকে বা দৌড়বিদকে বাঁকের ভেতরের দিকে অর্থাৎ বৃত্তাকার পথের কেন্দ্রের দিকে কাত হয়ে বাঁক নিতে হয়। সোজাভাবে বাঁক নিতে গেলে উল্টে পড়ে যাওয়ার সম্ভাবনা থাকে। বৃত্তাকার পথে সাইকেল চালানোর জন্য বৃত্তাকার পথের কেন্দ্রের দিকে অনুভূমিক বরাবর একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। আরোহীসহ সাইকেলের ভর যদি m হয়, আর যদি
আরোহী r ব্যাসার্ধের বৃত্তাকার পথে v সমদ্রুতিতে সাইকেল চালান তাহলে তার যে কেন্দ্রমুখী বলের প্রয়োজন হবে তার মান হলো F= । একজন আরোহী যখন সাইকেল চালান তখন তার উপর দুটি বল ক্রিয়া করে :
(১) আরোহীসহ সাইকেলের ওজন W=mg (চিত্র: ৪.২৫ ক), খাড়া নিচের দিকে এবং (২) ভূমির প্রতিক্রিয়া R, (চিত্র : ৪.২৫ খ) সাইকেল যে দিকে ভূমিতে বল প্রয়োগ করে তার বিপরীত দিকে ।
উপরিউক্ত দুটি বলের লব্ধি থেকেই তাকে প্রয়োজনীয় কেন্দ্রমুখী বল জোগাড় করতে হয়। ভূমির প্রতিক্রিয়া R এবং ওজন W একই সরলরেখায় পরস্পর বিপরীত দিকে ক্রিয়া করলে অনুভূমিক বরাবর লব্ধি তথা কেন্দ্রমুখী বল পাওয়া সম্ভব নয়। সুতরাং কেন্দ্রমুখী বল পাওয়ার জন্য ওজন W এবং প্রতিক্রিয়া R পরস্পরের সাথে হেলে অর্থাৎ কোণ করে ক্রিয়া করতে হবে (চিত্র : ৪.২৫)। যেহেতু ওজন W সব সময়ই খাড়া নিচের দিকে ক্রিয়া করবে, তাই ভূমির প্রতিক্রিয়া R কে অবশ্যই উল্লম্ব বরাবর ক্রিয়া না করে উল্লম্বের সাথে কোণ করে অর্থাৎ হেলে ক্রিয়া করতে হবে। আর সাইকেলের ঢাকা ভূমিকে যে বরাবর বল দেবে; যেহেতু প্রতিক্রিয়া তার বিপরীত দিকেই হবে, সুতরাং আরোহীসহ সাইকেলকে উল্লম্বের সাথে কোণ করে অর্থাৎ হেলে পড়ে বাঁক নিতে হবে। তাই বৃত্তাকার পথে বাঁক নিতে গেলেই কেন্দ্রমুখী বলের উদ্ভব হয় আর সেই বল সরবরাহ করার জন্যই আরোহীসমেত সাইকেলকে ভূমির দিকে হেলে পড়তে হয় ।
যদি আরোহী উল্লম্বের সাথে কোণে বেঁকে যান তাহলে প্রতিক্রিয়া বল R এর উল্লম্ব এবং অনুভূমিক উপাংশ হবে যথাক্রমে R cos এবং R sin । প্রতিক্রিয়ার এ উল্লম্ব উপাংশ আরোহীসমেত সাইকেলের ওজন mg-কে প্রশমিত করে আর অনুভূমিক উপাংশই সরবরাহ করে প্রয়োজনীয় কেন্দ্ৰমুখী বল
:- R cos θ= mg
এবং R sin θ =
বা, tan θ = (4.40)
সুতরাং সাইকেল আরোহীকে v সমদ্রুতিতে r ব্যাসার্ধের বৃত্তাকার পথে বাঁক নিতে গেলে তাকে উল্লম্বের সাথে যে কোণে বাঁকতে হবে তা ওপরের সমীকরণ থেকে বের করা যায়। এ সমীকরণ থেকে দেখা যায় যে, v-এর মান বড় এবং r -এর মান ছোট হলে tan θ তথা θ-এর মান বড় হয়। সুতরাং আরোহীর বেগ যতো বেশি হবে এবং বাঁকের ব্যাসার্ধ যতো কম হবে। তাকে ততো বেশি হেলতে হবে।
কোনো মোটর বা রেলগাড়ি যখন বাঁক নেয় তখন এ বাঁকাপথে ঘুরার জন্য একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। এ কেন্দ্রমুখী বল না পাওয়া গেলে গাড়ি জড়তার কারণে বাঁকাপথের স্পর্শক বরাবর চলে যাবে। অনেক সময় গাড়ি উল্টে যায়। সমতল পথে বাঁক নেওয়ার সময় গাড়ির চাকা ও রাস্তার মধ্যবর্তী ঘর্ষণ বল এ কেন্দ্রমুখী বল সরবরাহ করে। কিন্তু ঘর্ষণ বলের মান তথা কেন্দ্রমুখী বলের মান খুব কম হওয়ায় গাড়ি বেশি জোরে বাঁক নিতে পারে না। বেশি জোরে বাঁক নিতে গেলে কেন্দ্রমুখী বল তথা ঘৰ্ষণ বলের মান বাড়াতে হবে। আর সে জন্য বাঁকের মুখে রাস্তার তলকে অনুভূমিক তলের সাথে হেলিয়ে রাখতে হয় যাতে রাস্তার বাইরের দিক ভেতরের দিকের চেয়ে কিছু উঁচুতে থাকে। একে ঢাল বা ব্যাংকিং বলে। অনুভূমিক রেখার সাথে ঐ জায়গায় দুই পাশ যে কোণ উৎপন্ন করে তাকে ব্যাংকিং কোণ বলে।
ধরা যাক, আরোহীসমেত গাড়ির ওজন W। ৪.২৬ চিত্র থেকে দেখা যাচ্ছে যে, গাড়ির ওজন W সরাসরি নিচের দিকে কাজ করছে এবং রাস্তার অভিলম্বিক প্রতিক্রিয়া বল Fn রাস্তার সাথে সমকোণে গাড়ির উপর প্রযুক্ত হচ্ছে। এ দুই বলের লব্ধি F অনুভূমিকভাবে বৃত্তাকার পথের কেন্দ্রের দিকে ক্রিয়া করছে। এ লব্ধি বলই গাড়িটিকে বৃত্তাকার পথে ঘুরানোর জন্য প্রয়োজনীয় কেন্দ্রমুখী বল সরবরাহ করছে। এখন চিত্র থেকে এখানে θ হচ্ছে ব্যাংকিং কোণ ।
:-
:-
(4.41) নং সমীকরণ থেকে দেখা যাচ্ছে যে, রাস্তার ব্যাংকিং গাড়ির দ্রুতি ও বাঁকের ব্যাসার্ধের উপর নির্ভর করে গাড়ির ভরের উপর নির্ভর করে না।
ধরা যাক, ব্যাংকিং কোণ =
রাস্তার প্রস্থ, OB = d
এবং রাস্তার ভিতরের প্রান্ত থেকে বাইরের প্রান্তের উচ্চতা,
AB = h (চিত্র: ৪.২৭ ) ।
:-
বা,
ব্যাখ্যা খুব সীমিত সময়ের জন্য খুব বড় মানের ঘাত বল প্রযুক্ত হয়। অনেক সময় এ ঘাত বলের মান এত বড় হয় যে এর ক্রিয়াকাল খুব কম হলেও এর প্রভাব দৃষ্টিগ্রাহ্য হয়। যে স্বল্প সময়ব্যাপী ঘাত বল প্রযুক্ত হয় সেই সময় অন্যান্য বলের প্রভাব উপেক্ষা করা হয়।
উদাহরণ : ধরা যাক, একটি র্যাকেট কোনো টেনিস বলকে আঘাত করল। র্যাকেট কর্তৃক প্রযুক্ত বল F টেনিস বলটির ভরবেগ পরিবর্তন করে। যে সময় ধরে টেনিস বলটি র্যাকেটটির সংস্পর্শে থাকে সে সময়ে র্যাকেট কর্তৃক প্রযুক্ত বল টেনিস বলটির উপর ক্রিয়াশীল অন্যান্য বলের তুলনায় অনেক বড় হয়। র্যাকেট কর্তৃক প্রযুক্ত এরূপ বল ঘাত বল।
সংজ্ঞা কোনো বল ও বলের ক্রিয়াকালের গুণফলকে ঐ বলের ঘাত বলে।
ব্যাখ্যা : কোনো বল যদি কোনো বস্তুর উপর সময় ধরে ক্রিয়া করে, তাহলে বলের ঘাত হবে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent='true'><mi>J</mi><mo>→</mo></mover><mo>=</mo><mover accent='true'><mi>F</mi><mo>→</mo></mover><mo>△</mo><mi>t</mi><mo>=</mo><mi>m</mi><mover accent='true'><mi>a</mi><mo>→</mo></mover><mo>△</mo><mi>t</mi><mo>=</mo><mi>m</mi><mfrac><mrow><mo>△</mo><mover accent='true'><mi>v</mi><mo>→</mo></mover></mrow><mrow><mo>△</mo><mi>t</mi></mrow></mfrac><mo>△</mo><mi>t</mi><mspace linebreak="newline"/><mo>=</mo><mi>m</mi><mo mathvariant="italic">△</mo><mover accent='true'><mi>v</mi><mo mathvariant="italic">→</mo></mover><mo>=</mo><mo>(</mo><mover accent='true'><mrow><msub><mi>v</mi><mi>f</mi></msub></mrow><mo>→</mo></mover><mo>−</mo><mover accent='true'><mrow><msub><mi>v</mi><mi>i</mi></msub></mrow><mo>→</mo></mover><mo>)</mo><mspace linebreak="newline"/><mover accent='true'><mi>J</mi><mo>→</mo></mover><mo>=</mo><mi>m</mi><mover accent='true'><mrow><msub><mi>v</mi><mi>f</mi></msub></mrow><mo>→</mo></mover><mo>−</mo><mi>m</mi><mover accent='true'><mrow><msub><mi>v</mi><mi>i</mi></msub></mrow><mo>→</mo></mover><mo>=</mo><mover accent='true'><mrow><msub><mi>P</mi><mi>r</mi></msub></mrow><mo>→</mo></mover><mo>−</mo><mover accent='true'><mrow><msub><mi>P</mi><mi>i</mi></msub></mrow><mo>→</mo></mover><mo>=</mo><mo>△</mo><mover accent='true'><mi>P</mi><mo>→</mo></mover></math>
সুতরাং বলের ঘাত হলো বস্তুর ভরবেগের পরিবর্তন সমান।
:- =
আমাদের দৈনন্দিন জীবনে ঘাতবল ও বলের ঘাতের প্রভাব অপরিসীম। বস্তুকে ধীরগতি করতে হলে অর্থাৎ এর বেগ কমাতে হলে বলের ঘাতের প্রয়োগ হয়। এক্ষেত্রে বলের ঘাত গতির বিপরীত দিকে ক্রিয়া করে। ক্রিকেট খেলায় যখন একজন ফিল্ডার ক্যাচ ধরতে চান তখন গতিশীল বলকে থামিয়ে অর্থাৎ বলটির ভরবেগ শূন্যে নামিয়ে এনে ক্যাচ ধরতে হয়। এতে বলের ঘাতের প্রয়োজন হয় এবং এজন্য একটি বিপরীতমুখী বলকে কিছুক্ষণের জন্য ক্রিয়া করতে হয়। এখন ফিল্ডার যদি তার ঘাত স্থির রাখেন তাহলে ক্রিকেট বলটি তখনই থেমে যাবে। এতে যে সময় ধরে ফিল্ডারের হাতের উপর বল ক্রিয়া করে সেই সময় খুব ক্ষুদ্র হয়। ফলে বলের মান হতে হয় খুবই বৃহৎ যে বল ফিল্ডারের হাতে তীব্র ব্যথা উৎপন্ন করে। এখন বল ধরার মুহূর্তে ফিল্ডার যদি হাতটকে পেছনের দিকে টেনে নেন, তাহলে বলের ক্রিয়াকাল বৃদ্ধি পায়। ফলে থামানোর জন্য প্রয়োজনীয় ঘাতের যোগানদার বলও কম হয় এবং ক্যাচটি ধরাও অনেক কম পীড়াদায়ক হয়।
একই কারণে আমরা দেখতে পাই একজন মুষ্ঠিযোদ্ধা প্রতিপক্ষের ঘুষির প্রভাব কমানোর জন্য তার মাথাকে পিছনের দিক সরিয়ে নেন। ক্রিকেট খেলায় ব্যাটসম্যানরা ও উইকেটকিপারও একই কারণে প্যাড ও গ্লাভস পরে মাঠ নামেন। প্যাড ও গ্লাভসে দ্রুতগতির ক্রিকেটবল আঘাত করলে প্যাড ও গ্লাভস কিছুটা থেতলে গিয়ে সংঘর্ষের সময়কাল বাড়িয়ে দেয় ফলে ঘাত বল হ্রাস পায় এবং বলের আঘাত কম পীড়াদায়ক হয়।
যেমন হাতুড়ি দিয়ে পেরেককে আঘাত করা বা ক্রিকেট খেলায় ব্যাট দিয়ে বলকে আঘাত করা। এখানে হাতুড়ি বা ব্যাট খুব অল্প সময়ের জন্য পেরেক বা বলের সংস্পর্শ থাকে কিন্তু খুব বড় মানের বলে আঘাত করে। সংঘর্ষে ঘাত বল ক্রিয়া করে। সংঘর্ষের মূল ধারণাটি হলো : সংঘর্ষে বস্তুগুলোর অথবা অন্তত একটি বস্তুর গতি হঠাৎ এমনভাবে পরিবর্তিত হবে যে আমরা “সংঘর্ষের পূর্ব" এবং "সংঘর্ষের পর "কে সুস্পষ্টভাবে আলাদা করতে পারি। সংঘর্ষে ভরবেগের নিত্যতা সূত্র খাটে অর্থাৎ সংঘর্ষের পূর্বের মোট ভরবেগ এবং সংঘর্ষের পরের মোট ভরবেগ একই থাকে। কিন্তু গতিশক্তি সংরক্ষিত থাকে কিনা তার উপর নির্ভর করে সংঘর্ষকে দুভাগে ভাগ করা হয়। স্থিতিস্থাপক সংঘর্ষ এবং অস্থিতিস্থাপক সংঘর্ষ। স্থিতিস্থাপক সংঘর্ষে ভরবেগের সাথে সাথে গতিশক্তিও সংরক্ষিত থাকে, অস্থিতিস্থাপক সংঘর্ষে ভরবেগ সংরক্ষিত হয়, কিন্তু গতিশক্তি সংরক্ষিত থাকে না।
দুটি বস্তুর মধ্যে সংঘর্ষ হলে যদি মোট গতি শক্তি সংরক্ষিত থাকে অর্থাৎ যদি বস্তুগুলোর মোট গতি শক্তির পরিবর্তন না হয় তাহলে তাকে স্থিতিস্থাপক সংঘর্ষ বলে। ধরা যাক, m1, ও m2 ভরের দুটি বস্তু একই সরলরেখা বরাবর চলছে। m2 এর বেগ m1 এর বেগের চেয়ে বেশি হলে চলতে চলতে কোনো এক সময় m2 ভরের বস্তুটি m1 ভরের বস্তুটিকে ধাক্কা দিবে অর্থাৎ বস্তুদ্বয় সংঘর্ষে লিপ্ত হবে।
m1 ও m2 ভরের দুটি বস্তুর সংঘর্ষের আগে বেগ যথাক্রমে vli ও v2i এবং সংঘর্ষের পরে যথাক্রমে বেগ vlf ও v2f হলে (চিত্র : ৪.২৮), ভরবেগের সংরক্ষণ সূত্র থেকে লেখা যায়,
(4.44) ও (4.45) সমীকরণকে যথাক্রমে লেখা যায়,
mi1(vlf - VIf) = m2 (v2f - v2i)….. (4.46)
এবং m1 (v2If - v2If) = m2 (v22f-v22i)… (4.47)
.(4.47) সমীকরণকে (4.46) সমীকরণ দিয়ে ভাগ করে আমরা পাই,
Vli + Vlf= V2f+ V2i
বা, Vli - V2i = V2f - VIf
(4.48) সমীকরণ থেকে দেখা যায় যে, সংঘর্ষের আগে বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে কাছাকাছি আসে এবং সংঘর্ষের পর বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে দূরে সরে যায় তার মান সমান।
(4.48) সমীকরণকে লেখা যায়,
V2f = Vli + VIf - V2i
(4.49) সমীকরণকে (4.46) সমীকরণে বসিয়ে আমরা পাই,
১. V1 ও V2 সমান হলে বস্তু দুটির মধ্যে কোনো সংঘর্ষ হবে না।
২. বস্তু দুটির ভর সমান হলে অর্থাৎ m1 = m2 হলে (4.50) ও (4.52) সমীকরণ থেকে পাওয়া যায়,
VIf=V2i এবং V2f = Vli... ... (4.53)
সুতরাং সমান ভরের দুটি বস্তুর মধ্যে সংঘর্ষ হলে একটি বস্তু অপরটির বেগ প্রাপ্ত হয় অর্থাৎ বস্তুদ্বয় বেগ বিনিময় করে।
৩. যদি সংঘর্ষের পূর্বে m1 ভরের বস্তু স্থির থাকে তাহলে (4.50 ) ও (4.52 ) সমীকরণ অনুসারে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mrow><mi>I</mi><mi>f</mi></mrow></msub><mo>=</mo><mfenced><mfrac><mrow><mn>2</mn><msub><mi>m</mi><mn>2</mn></msub></mrow><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub></mrow></mfrac></mfenced><msub><mi>v</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub></math> এবং <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mrow><mn>2</mn><mi>f</mi></mrow></msub><mo>=</mo><mfenced><mfrac><mrow><msub><mi>m</mi><mn>2</mn></msub><mo>−</mo><msub><mi>m</mi><mn>1</mn></msub></mrow><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub></mrow></mfrac></mfenced><msub><mi>v</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub></math>
এখন যদি m1 = m2 হয় তাহলে VIf= V2i এবং v2f = 0... .. (4.55)
অর্থাৎ দুটি সমান ভরের বস্তুর একটি যদি স্থির থাকে তাহলে সংঘর্ষের ফলে গতিশীল বস্তুটি থেমে যাবে এবং থেমে থাকা বস্তুটি গতিশীল বস্তু যে বেগে আসছিল সেই বেগ নিয়ে চলতে থাকবে।
কোনো মসৃণ তলে থেমে থাকা একটি মার্বেলকে যদি পেছন থেকে অন্য মার্বেল দিয়ে অনুভূমিকভাবে আঘাত করা যায়। তাহলে থেমে থাকা মার্বেলটি আগত মার্বেলের বেগ নিয়ে চলতে থাকে এবং আগত মার্বেলটি থেমে যায়।
৪. যদি স্থির বস্তুর ভর গতিশীল বস্তুর তুলনায় অনেকগুণ বেশি হয় অর্থাৎ m1 >> m2 হয়, তাহলে (4.54) সমীকরণ থেকে আমরা পাই,
Vlf 0 এবং V2f = -V2i (4.56)
একটি বলকে যদি ভূ-পৃষ্ঠের কোনো অনুভূমিক তলে ফেলা হয় তাহলে বল ও পৃথিবীর মধ্যে সংঘর্ষ ঘটে। সংঘর্ষটি যদি স্থিতিস্থাপক হয় তাহলে বলটি একই বেগে বিপরীত দিকে ফিরে আসে এবং যে উচ্চতা থেকে ফেলা হয়েছিল সেই উচ্চতায় ওঠে। ক্যারামবোর্ডে স্ট্রাইকার দিয়ে বোর্ডের বিপরীত পৃষ্ঠকে সোজাসুজি আঘাত করলে স্ট্রাইকারটি প্রায় একই বেগে বিপরীত দিকে ফিরে আসে। একই কারণে দেয়ালে কোনো বল অনুভূমিকভাবে ধাক্কা খেলে দেয়ালটির ভর যেহেতু অনেক অনেক বেশি এবং স্থির তাই বলটি একই বেগে পিছনের দিকে সরে আসে।
৫. স্থির বস্তুর ভর যদি গতিশীল বস্তুর ভরের তুলনায় নগণ্য হয়, অর্থাৎ m1 << m2 হয় তাহলে (4.54) সমীকরণ থেকে দেখা যায়,
Vlf 2v2ই এবং V2f v2……. .. . (4.57)
অর্থাৎ কোনো ভারী বস্তু থেমে থাকা হালকা বস্তুকে আঘাত করলে ভারী বস্তুর বেগ কার্যত অপরিবর্তিত থাকে, কিন্তু হালকা বস্তু ভারী বস্তুটির প্রায় দ্বিগুণ বেগ নিয়ে চলতে থাকে।
মসৃণ তলে থেমে থাকা একটি মার্বেলকে ক্রিকেট বল দিয়ে আঘাত করলে ক্রিকেট বলের বেগের কোনো পরিবর্তন হবে না কিন্তু মার্বেলটি অতিদ্রুত বেগে ছিটকে যাবে।
দুটি বস্তুর মধ্যে ধাক্কা লাগলে বা সংঘর্ষ হলে যদি বস্তুগুলোর মোট গতিশক্তি সংরক্ষিত না হয় অর্থাৎ সংঘর্ষের পূর্বের ও পরের গতিশক্তি যদি সমান না হয় তাহলে সেই সংঘর্ষকে অস্থিতিস্থাপক সংঘর্ষ বলে। সংঘর্ষের পূর্বের গতিশক্তির চেয়ে পরের গতিশক্তি কম বা বেশি হতে পারে। যদি কম হয় তাহলে দুই গতিশক্তির পার্থক্যটুকু তাপ হিসেবে উদ্ভূত হয় বা সংঘর্ষের ফলে বিকৃত বস্তুর বিভব শক্তি হিসেবে আবির্ভূত হয়। আবার যদি সংঘর্ষের পরের গতিশক্তি পূর্বের গতিশক্তির চেয়ে বেশি হয় তাহলে সংঘর্ষের ফলে বিভব শক্তি যুক্ত হবে। তবে উভয় ক্ষেত্রেই ভরবেগ ও মোট শক্তি সংরক্ষিত হয়।
m1 ও m2 ভরের দুটি বস্তু vli ও v2i বেগে চলে পরস্পরের সাথে সংঘর্ষের ফলে পরস্পরের সাথে যুক্ত থেকে vf বেগ নিয়ে চলতে থাকে তাহলে সংঘর্ষটি হবে একটি অস্থিতিস্থাপক সংঘর্ষ। এক্ষেত্রে,
m1vli + m2v2i = (m1 + m2 ) vf
অস্থিতিস্থাপক সংঘর্ষ হল এমন একটি সংঘর্ষ যেখানে দুটি বস্তু সংঘর্ষের পর একে অপরের সাথে আটকে যায় অথবা একত্রিত হয়ে যায়। এই ধরনের সংঘর্ষে গতিশক্তি সংরক্ষিত থাকে না। অর্থাৎ, সংঘর্ষের আগের মোট গতিশক্তি এবং সংঘর্ষের পরের মোট গতিশক্তি সমান হয় না। সংঘর্ষের ফলে কিছু গতিশক্তি অন্য শক্তিতে রূপান্তরিত হয়, যেমন তাপ, শব্দ বা বিকৃতি।
বৈশিষ্ট্য | স্থিতিস্থাপক সংঘর্ষ | অস্থিতিস্থাপক সংঘর্ষ |
---|---|---|
গতিশক্তি | সংরক্ষিত থাকে | সংরক্ষিত হয় না |
বস্তুগুলি | সংঘর্ষের পর আলাদা হয়ে যায় | সংঘর্ষের পর আটকে যায় |
উদাহরণ | দুটি বিলিয়ার্ড বলের সংঘর্ষ | একটি গাড়ির সঙ্গে একটি গাছের সংঘর্ষ |
একটি খেলনা মোটরকে মাটির ওপর গড়িয়ে দিলে যতদূর যাবে সিমেন্টের মেঝের ওপর তার থেকে বেশি দূর যাবে। আবার মসৃণ মেঝেতে পুরানো জুতা পায়ে চলতে যত সুবিধা নতুন জুতা পায়ে তত নয়। এর কারণ কী? কোনো বস্তু আপাতদৃষ্টিতে যতই মসৃণ মনে হোক না কেন কোনো বস্তুই কিন্তু সম্পূর্ণ মসৃণ হতে পারে না। সব থেকে মসৃণ বস্তুর তলও খানিকটা উঁচু নিচু। ফলে যখন কোনো বস্তু অপর বস্তুর ওপর দিয়ে চলার চেষ্টা করে তখন বস্তু দুটির উঁচু নিচু খাঁজগুলো পরস্পরের সাথে আটকে যায়, ফলে গতি বাধাপ্রাপ্ত হয় বা ঘর্ষণের উৎপত্তি হয়। আবার বস্তুদ্বয়ের তল যে স্থানে স্পর্শ করে থাকে সে স্থানের অণুগুলো পরস্পরকে আকর্ষণ করে, এর ফলেও তলদ্বয়ের মধ্যবর্তী গতি বাধাপ্রাপ্ত হয়। যে বল দ্বারা গতি বাধাপ্রাপ্ত হয় তাকে ঘর্ষণ বল বলে।
১। স্থিতি ঘর্ষণ (Static Friction),
২। গতীয় ঘর্ষণ বা বিসর্প-ঘর্ষণ (Kinetic Friction or Sliding Friction).
৩। আবর্ত ঘর্ষণ (Rolling Friction) এবং ৪। প্রবাহী ঘর্ষণ (Fluid Friction)।
ঘর্ষণ বল দুটি বস্তু পরস্পরের সংস্পর্শে থেকে যদি একের ওপর দিয়ে অপরটি চলতে চেষ্টা করে তাহলে বস্তুদ্বয়ের স্পর্শতলে এই গতির বিরুদ্ধে যে বল উৎপন্ন হয়, তাকে ঘর্ষণ বল বলে।
মনে করি, M একটি কাঠের ব্লক সমতল টেবিলের ওপর আছে (চিত্র ৪.২৯) । এই অবস্থায় ব্লকের ওজন W টেবিলের ওপর খাড়া নিচের দিকে ক্রিয়া করছে এবং নিউটনের তৃতীয় সূত্রানুসারে টেবিলও ব্লকের ওপর সমান ও বিপরীত প্রতিক্রিয়া R প্রয়োগ করবে। এই অবস্থায় R ও W পরস্পর সমান ও বিপরীতমুখী হওয়ায় উভয় উভয়কে নিষ্ক্রিয় (balance) করবে। ফলে ব্লকটি স্থির থাকবে এবং কোনো ঘর্ষণ বলও থাকবে না। এখন যদি ব্লকটার ওপর টেবিলের সমান্তরাল সামান্য বল F প্রয়োগ করা হয় তা হলেও দেখা যাবে যে ব্লকে গতির সঞ্চার হচ্ছে না। যদিও R ও W টেবিলের তলের সাথে লম্ব হওয়ায় এবং F-এর সমান্তরাল আর কোনো বল না থাকায় ব্লকে গতির সঞ্চার হওয়া উচিত ছিল। এখন F বলকে যদি আমরা ধীরে ধীরে বৃদ্ধি করতে থাকি তাহলে দেখা যাবে F-এর একটা নির্দিষ্ট মানের জন্য ব্লকটি গতিশীল হওয়ার উপক্রম হবে। এই নির্দিষ্ট মানের চেয়ে বেশি প্রয়োগ করলে ব্লকটিতে গতির সঞ্চার হবে। আমরা বলতে পারি যে, বল প্রয়োগেও ব্লকটি গতিশীল না হওয়ার কারণ ব্লক ও টেবিলের মধ্যবর্তী ঘর্ষণ বল, fn। এখন FR-এর মান যে সীমায় পৌঁছলে ব্লকে গতির সঞ্চার হওয়ার উপক্রম হবে সেই সীমায় বস্তুদ্বয়ের মধ্যবর্তী আপেক্ষিক গতিকে বাধাদানকারী ঘর্ষণ বলের মান সর্বাধিক হবে। ধর্ষণ বলের এই মানকে সীমান্তিক মান বা সীমান্তিক ঘর্ষণ বলে।
যতক্ষণ পর্যন্ত ব্লকটি স্থির থাকে বা ব্লক ও টেবিলের মধ্যে কোনো আপেক্ষিক গতি না থাকে তখন বস্তুদ্বয়ের মধ্যে যে ঘর্ষণ কাজ করে তাকে স্থিতি ঘর্ষণ বলে। স্থিতি ঘর্ষণের মান শূন্য থেকে সীমান্তিক মান পর্যন্ত হতে পারে।
স্থিতি ঘর্ষণের সীমান্তিক মান fx, এবং অভিলম্বিক প্রতিক্রিয়া R হলে স্থিতি ঘর্ষণ গুণাঙ্ক হবে ,
যে কোনো দুটি তলের মধ্যবর্তী স্থিতি ঘর্ষণ গুণাঙ্কের মান সব সময় । এর চেয়ে ছোট হয়। মাত্রা ও একক : একই জাতীয় দুটি রাশির অনুপাত হওয়ায় ঘর্ষণ গুণাঙ্কের কোনো মাত্রা বা একক নেই।
দুটি অমসৃণ তলের মধ্যে যে স্থিতি ঘর্ষণ ক্রিয়া করে তা কতগুলো সূত্র মেনে চলে । এদেরকে স্থিতি ঘর্ষণের সূত্রাবলি বলা হয়।
১. ঘর্ষণ বল সর্বদা গতির বিরুদ্ধে ক্রিয়া করে।
২. স্থিতি ঘর্ষণ বলের সীমান্তিক মান অভিলম্বিক (Normal)
প্রতিক্রিয়ার সমানুপাতিক ।
৩. স্থিতি ঘর্ষণ বল স্পর্শতলের প্রকৃতির ওপর নির্ভর করে স্পর্শ তলের ক্ষেত্রফলের ওপর নয়।
Angle of Friction
সীমান্তিক ঘর্ষণের ক্ষেত্রে অভিলম্বিক প্রতিক্রিয়া R ও ঘর্ষণ বল f-কে সংযোজিত করে যে লব্ধি বল পাওয়া যায় তাকে লব্ধ প্রতিক্রিয়া বলে।
ব্যাখ্যা : ৪.৩০ চিত্রে সীমান্তিক ঘর্ষণ, j, ও অভিলম্বিক প্রতিক্রিয়া, R-কে সংযোজন করে লব্ধ প্রতিক্রিয়া S পাওয়া গেল এই লব্ধ প্রতিক্রিয়া S ও অভিলম্বিক প্রতিক্রিয়া R-এর মধ্যবর্তী কোণ হচ্ছে ঘর্ষণ কোণ (চিত্র ৪.৩০)।
Angle of Repose
যে কোনো তলের আনতি স্থিতি কোণ পর্যন্ত হলে এই তলের ওপর বস্তু স্থির থাকবে। আনতি স্থিতি কোণ অতিক্রম করে গেলে বস্তুতে গতি সঞ্চার হবে।
৪.৩১ চিত্রে A ব্লকটি OX আনত তলের ওপর বসানো আছে। অনুভূমিক রেখার সাথে OX তলের আনতি ইচ্ছামত পরিবর্তন করা যায়। ব্লকের ওজন W ও ঘর্ষণ বল J, । এখন OX তলের আনতি বাড়াতে বাড়াতে যখন আনতি হয় তখন A ব্লকটি গতিশীল হওয়ার উপক্রম হয়। এই সীমান্তিক অবস্থায় আমরা লিখতে পারি—
R = W cos এবং fs = W sin
Kinetic Friction
পরীক্ষা করে দেখা গেছে যে, চলমান অবস্থায় ঘর্ষণ বল বস্তুর স্থিতি ঘর্ষণ বলের সীমান্তিক মানের চেয়ে কম।
১. গতীয় ঘর্ষণ বল অভিলনিক প্রতিক্রিয়ার সমানুপাতিক। এখানে ঘর্ষণ বল সীমান্তিক ঘর্ষণ বলের চেয়ে কম।
২. গতীয় ঘর্ষণ বল স্পর্শতলের ক্ষেত্রফলের ওপর নির্ভর করে না, নির্ভর করে গায়ের প্রকৃতির ওপর। ৩. বেগ খুব বেশি না হলে গতীয় ঘর্ষণ বল তলদ্বয়ের বেগের ওপর নির্ভরশীল নয়।
সংজ্ঞা : কোন বস্তু যখন অপর একটি বস্তুর ওপর দিয়ে স্থির বেগে চলতে থাকে গতীয় ঘর্ষণ বল এবং অভিলম্বিক প্রতিক্রিয়ার অনুপাতকে গতীয় ধর্ষণ গুণাঙ্ক বলে।
গতীয় ঘর্ষণ বল fk এবং অভিলম্বিক প্রতিক্রিয়া R হলে, গতীয় ঘর্ষণাঙ্ক হবে,
m ভরের একটি বস্তুর উপর F অনুভূমিক বলের প্রয়োগে গতিশীল হয়। যদি fk গতীয় ঘর্ষণ বল বস্তুটির গতিতে বাধা সৃষ্টি করে তাহলে বস্তুটির ত্বরণ নিম্নোক্ত সমীকরণ থেকে পাওয়া যায়,
Rolling Friction
বস্তুটি যখন কোনো তলের ওপর দিয়ে গড়িয়ে যায় তখন বস্তুটির চাপে ভারবাহী তলটির খানিকটা অংশ অবনমিত হয়। ফলে পড়িয়ে চলা বস্তুর ঠিক সামনে ঐ তলের খানিকটা অংশ BA উঁচু হয়ে যায় (চিত্র : ৪.৩২)
বস্তুটি যতক্ষণ গড়িয়ে চলতে থাকে ততক্ষণ এরূপ উঁচু হয়ে ওঠা বাধাকে অতিক্রম করে যেতে হয় ফলে আবর্ত ঘর্ষণের উৎপত্তি হয়। বস্তুটি অপর বস্তুর ওপর দিয়ে গড়িয়ে চলার সময় যদি অভিলম্বিক প্রতিক্রিয়া R এবং আবর্ত ঘর্ষণ fr, হয় তাহলে, আবর্ত ঘর্ষণাঙ্ক,
আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই আমরা দেখতে পাই যে, একটা বাক্সকে শুধু মেঝের ওপর দিয়ে টেনে নিতে যত কষ্ট হয় তার চেয়ে অনেক কম কষ্ট হবে যদি বাক্সের তলায় অনেকটা রোলার লাগিয়ে দেয়া যায়। কাজেই আমরা বলতে পারি, আবর্ত ঘর্ষণ গতীয় ঘর্ষণের চেয়ে অনেক কম।
যখন কোনো তরল পদার্থ বা বায়বীয় পদার্থের গতিপথে কোনো স্থির বস্তু রাখা হয় বা কোনো বস্তুকে তরল বা বায়বীয় পদার্থের মাঝ দিয়ে গতিশীল হতে হয় তখন উভয়ের মধ্যে ঘর্ষণ উৎপন্ন হয়। এই ধরনের ঘর্ষণকে প্রবাহী ঘর্ষণ বলে। সাধারণত জাহাজ পানিতে চলার সময়ে বা বৃষ্টির ফোঁটা বাতাসের মাঝ দিয়ে পড়ার সময়ে এই ধরনের ঘর্ষণের উৎপত্তি হয় ।
আমাদের দৈনন্দিন জীবনে ঘর্ষণ অত্যন্ত প্রয়োজনীয়। ঘর্ষণ না থাকলে আমরা হাঁটতে পারতাম না, পিছলে যেতাম। কাঠে পেরেক বা স্ক্রু আটকে থাকতো না, সম্ভব হতো না দড়িতে কোনো গিরো দেয়া। কোনো কিছু আমরা ধরে রাখতে পারতাম না। ফলে সহজেই বোঝা যায়, ঘর্ষণ না থাকলে আমাদের কতটা অসুবিধার সম্মুখীন হতে হতো।
ঘর্ষণের জন্য আমাদেরকে অসুবিধাও কম পোহাতে হয় না। যন্ত্র চলার সময় গতিশীল অংশগুলোর মধ্যে ঘর্ষণ ক্রিয়া করার ফলে ক্রমশ ক্ষয়প্রাপ্ত হয়। তাছাড়া যান্ত্রিক দক্ষতাও বেশ কমে যায়, আবার ধর্ষণের ফলে অনাবশ্যক তাপ উৎপাদনের জন্যও যন্ত্রের ক্ষতি হয়।
এসব অসুবিধা দূর করার জন্য যন্ত্রপাতির স্পর্শতলগুলোর মাঝে পিচ্ছিলকারী বা গ্রাফাইট ব্যবহার করে পিচ্ছিল রাখা হয়।
ক্ষেত্র হলো এমন একটি অঞ্চল, যেখানে কোনো বস্তুর উপর অন্য একটি বস্তুর উপস্থিতির কারণে বল ক্রিয়া করে। কোনো একটি অঞ্চলে দুটি বস্তুকে কাছাকাছি রাখলে তারা পরস্পরকে নিজের দিকে টানে। এই বলকে বলা হয় মহাকর্ম বল। কোনো বস্তুর আশেপাশে যে অঞ্চলব্যাপী এর মহাকর্ষীয় প্রভাব বজায় থাকে, অর্থাৎ অন্য কোনো বস্তু রাখা হলে সেটি আকর্ষণ বল অনুভব করে তাকে ঐ বস্তুর মহাকর্ষীয় বল ক্ষেত্র বা শুধু মহাতীয় ক্ষেত্র বলে।
এভাবে দুটি তড়িৎ আধান কাছাকাছি আনলে পরম্পর একে অপরের উপর বল প্রয়োগ করে। এ বল আকর্ষণধর্মী বা বিকর্ষণধর্মী উভয় প্রকার হতে পারে। কোনো তড়িৎ আধানের চারদিক যে অঞ্চল জুড়ে তড়িৎ প্রভাব বজায় থাকে বা বল ক্রিয়া করে অর্থাৎ অন্য একটি তড়িৎ আধানকে ঐ অঞ্চলে আনা হলে সেটি আকর্ষণ বা বিকর্ষণ বল অনুভব করে, তাকে ঐ তড়িৎ আধানের তড়িৎ বল ক্ষেত্রে বা তড়িৎ ক্ষেত্র বলে।
কোনো চুম্বকের চারদিকে যে অঞ্চলের মধ্যে অন্য একটি চুম্বক বা চৌম্বক পদার্থ আনলে এদের উপর চৌম্বক বল ক্রিয়া করে তাকে বলা হয় ঐ চুম্বকের ক্ষেত্র
একটি বল ক্ষেত্রের সর্বত্র সমান বল ক্রিয়া করে না, অর্থাৎ বলক্ষেত্রের সর্বার প্রভাব সমান নয়। বল ক্ষেত্রের কোনো বিন্দুতে প্রভাব কতটুকু প্রবল সেটা পরিমাপ করা হয় প্রাবল্য দ্বারা। প্রাবল্য পরিমাপ করতে হলে বল ক্ষেত্রের বিভিন্ন বিন্দুতে একটি পরীক্ষণীয় বন্ধু স্থাপন করতে হয়। সেই পরীক্ষণীয় বস্তু যে বল লাভ করে তার দ্বারাই প্রাবল্য পরিমাপ করা হয়। সাধারণত পরীক্ষণীয় বন্ধু হিসেবে একটি একক ভরের বা একক আধানের বন্ধু নির্বাচিত করা হয়। মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে একক ভরের একটি বস্তু স্থাপন করলে তার উপর যে মহাবর্গীয় বল প্রযুক্ত হয় তাকে ঐ বিন্দুর মহাকর্ষীয় ক্ষেত্র প্রাবল্য বলে।
মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে ভরের কোনো বন্ধু স্থাপন করলে যদি F বল লাভ করে, তবে ঐ বিন্দুতে একক ভরের বস্তু স্থাপন করলে তার ওপর ক্রিয়াশীল বল হবে । সুতরাং মহাকর্ষীয় ক্ষেত্র প্রাবল্য,
... (4.12)
আবার তড়িৎ ক্ষেত্রের কোনো বিন্দুতে একটি একক ধনাত্মক আধান স্থাপন করলে সেটি যে বল অনুভব করে তাকে ঐ বিন্দুর তড়িৎ প্রাবল্য বলা হয় ।
তড়িৎ ক্ষেত্রের কোনো বিন্দুতে স্থাপিত +q আধান যদি বল অনুভব করে তাহলে ঐ বিন্দুতে প্রাবল্যের মান হবে,
… (4.13)
যেহেতু বল একটি ভেক্টর রাশি, সুতরাং প্রাবল্যও একটি ভেক্টর রাশি ।
স্বাভাবিকভাবেই একটি বলক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্যের মান ও দিক বিভিন্ন হবে।
আমরা আমাদের দৈনন্দিন জীবনে এমন অনেক বস্তুর সাক্ষাৎ পাই যেগুলো ঘুরে। যেমন দরজা, বৈদ্যুতিক পাখা, লাটিম ইত্যাদি। পৃথিবীর সাথে দুটি ঘূর্ণন গতি জড়িত একটি আহ্নিক গতি অপরটি সূর্যের চারপাশে বার্ষিক গতি। যখন একটি দৃঢ় বন্ধুর প্রত্যেকটি কণা বৃত্তাকার পথে পরিভ্রমণ করে তখন ঐ বন্ধুটি ঘূর্ণনগতি সম্পন্ন করে। কোনো বস্তু যখন ঘুরে তখন তার প্রত্যেকটি কণা কোনো না কোনো বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে ঘুরে। ঘূর্ণনশীল কোনো বস্তুর প্রত্যেকটি কণার বৃত্তাকার গতির কেন্দ্রগুলো যে সরলরেখায় অবস্থিত তাকে ঘূর্ণন অক্ষ বলে। একটি ঘূর্ণায়মান দৃঢ় বস্তুর ক্ষেত্রে প্রত্যেকটি কলা থেকে ঘূর্ণন অক্ষের উপর অঙ্কিত প্রতিটি লহু একই সময়ে সমান কোণ অতিক্রম করে। কোনো নির্দিষ্ট অক্ষের সাপেক্ষে একটি দৃঢ় বস্তুর ঘূর্ণন গতি বর্ণনা করার জন্য আমরা যে সকল রাশি ব্যবহার করি সেগুলো হলো কৌণিক সরণ , কৌণিক বেগ এবং কৌণিক ত্বরণ
সংজ্ঞা : বৃত্তাকার পথে ঘূর্ণায়মান কোনো কণা বা বন্ধু নির্দিষ্ট সময় ব্যবধানে বৃত্তের কেন্দ্রে যে কোণ উৎপন্ন করে তাকে কৌণিক সরণ বলে।
৪.৭ চিত্রে কৌণিক দূরত্ব বা কৌণিক সরণ , পরিমাপের জন্য রেডিয়ান একক ব্যবহার করা হয়। একে ডিগ্রিতেও মাপা যেতে পারে।
সংজ্ঞা : সময় ব্যবধান শূন্যের কাছাকাছি হলে কোনো বিন্দু বা অক্ষকে কেন্দ্র করে বৃত্তাকার পথে চলমান কোনো বস্তুর সময়ের সাথে কৌণিক সরণের হারকে কৌণিক বেগ বলে।
ব্যাখ্যা: সময়ে কোনো বস্তুর কৌণিক সরণ হলে কৌণিক বেগ,
…. (4.14)
অর্থাৎ সময়ের সাপেক্ষে কৌণিক সরণের অন্তরককে কৌণিক বেগ বলা হয়।
সংজ্ঞা : সময় ব্যবধান শূন্যের কাছাকাছি হলে সময়ের সাথে বস্তুর কৌণিক বেগের পরিবর্তনের হারকে কৌণিক ত্বরণ বলে।
ব্যাখ্যা : : ব্যবধানে কোনো বস্তুর কৌণিক বেগের পরিবর্তন হলে, কৌণিক ত্বরণ,
... (4.15)
অর্থাৎ সময়ের সাপেক্ষে কৌণিক বেগের অন্তরককে কৌণিক ত্বরণ বলা হয়।
ঘূর্ণন গতি সংক্রান্ত এ রাশিগুলো তৃতীয় অধ্যায়ে বিস্তারিত আলোচনা করা হয়েছে।
আমরা তৃতীয় অধ্যায়ে জড়তা নিয়ে আলোচনা করেছি। আমরা জানি, কোনো বস্তুর গতির তথা বেগের পরিবর্তনকে বাধা দেওয়ার প্রয়াসই হচ্ছে জড়তা। জড়তার পরিমাপ হচ্ছে ভর। কোনো একটি অক্ষের সাপেক্ষে ঘূর্ণনরত একটি বন্ধুর ঘূর্ণন গতির পরিবর্তনকে বাধা দেওয়ার প্রয়াস হচ্ছে জড়তার ভ্রামক। জড়তার ভ্রামক ঘূর্ণন অক্ষ থেকে ভরের বণ্টন ও দূরত্বের উপর নির্ভর করে।
ধরা যাক, M ভরের একটি দৃঢ় বস্তু AB অক্ষের চারদিকে সমকৌণিক বেগে ঘুরছে। এই ঘূর্ণন গতির জন্য বস্তুটি যে গতিশক্তি লাভ করে, তাকে ঘূর্ণন গতিশক্তি বলে। ধরা যাক, M ভরের বস্তুটি m1, m2, m3ইত্যাদি ভরের অসংখ্য বস্তুকণার সমষ্টি এবং AB অক্ষ থেকে এদের লম্ব দূরত্ব যথা, r1, r2, r3 ইত্যাদি (চিত্র : ৪.৮ )। কোনো অক্ষ বা কোনো সরলরেখা থেকে কোনো বিন্দু বা কণার দূরত্ব বলতে ন্যূনতম দূরত্ব তথ্য সম দূরত্বকে বোঝায়। যেহেতু কণাগুে বস্তুর সাথে দৃঢ়ভাবে আবদ্ধ তাই প্রত্যেকের কৌণিক বেগ হবে। ঘূর্ণন অক্ষ থেকে এদের দূরত্ব সমান নয় বলে এদের রৈখিক বেগ সমান হবে না।
এখন, m1 বস্তুকণার রৈখিক বেগ, v1=
অতএব, এর গতিশক্তি <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mn>1</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>m</mi><mn>1</mn></msub><msubsup><mi>v</mi><mn>1</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>m</mi><mn>1</mn></msub><msup><mi>ω</mi><mn>2</mn></msup><msubsup><mi>r</mi><mn>1</mn><mn>2</mn></msubsup></math>
আবার, m2 বস্তুকণার রৈখিক বেগ <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">v</mi><mn>2</mn></msub><mo>=</mo><mi mathvariant="normal">ω</mi><mo> </mo><msub><mi mathvariant="normal">r</mi><mn>2</mn></msub></math>
সুতরাং এর গতিশক্তি <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mn>2</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>m</mi><mn>2</mn></msub><msubsup><mi>v</mi><mn>2</mn><mn>2</mn></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>m</mi><mn>2</mn></msub><msup><mi>ω</mi><mn>2</mn></msup><msubsup><mi>r</mi><mn>2</mn><mn>2</mn></msubsup></math>
এভাবে আমরা প্রত্যেকটি বস্তুকণার গতিশক্তি নির্ণয় করতে পারি। এখন সমগ্র বস্তুটির গতিশক্তি হবে সকল বস্তুকণার গতিশক্তির সমষ্টির সমান।
অতএব, সমগ্র বস্তুর গতিশক্তি,
এই I ই হচ্ছে জড়তার ভ্রামক।
কিন্তু কোনো বস্তুর ভর নিরবচ্ছিন্নভাবে সমগ্র বস্তুর মধ্যে বণ্টিত থাকে। সুতরাং ঘূর্ণন অক্ষ থেকে r দূরত্বে ক্ষুদ্রাতিক্ষুদ্র ভর dm হলে নিরবচ্ছিন্ন বস্তুর ক্ষেত্রে (4.17) সমীকরণ দাঁড়ায়,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>I</mi><mo>=</mo><mo>∫</mo><msup><mi>r</mi><mn>2</mn></msup><mi>d</mi><mi>m</mi></math>
জড়তার ভ্রামকের মাত্রা হচ্ছে ভর × (দূরত্ব)২ এর মাত্রা। অর্থাৎ ML2 এবং একক হচ্ছে kg m2
কোনো অক্ষের সাপেক্ষে কোনো বস্তুর জড়তার ভ্রামক 50 kg m2 বলতে বোঝায় ঐ বস্তুর প্রত্যেকটি কণার ভর এবং ঐ অক্ষ থেকে তাদের প্রত্যেকের লম্ব দূরত্বের বর্গের নফলের সমষ্টি 50 kg m2
আবার (4.16) সমীকরণ থেকে আমরা পাই,
= 1 একক হলে I = 2E
m ভরের কোনো বস্তু যদি অনুভূমিকভাবে গড়াতে থাকে তার মোট গতিশক্তি
এখানে, v = বস্তুটির রৈখিক বেগ, = বস্তুটির কৌণিক বেগ এবং I = বস্তুটির আপন অক্ষের সাপেক্ষে জড়তার ভ্রামক।
ব্যাখ্যা: ধরা যাক, একটি বস্তুর ভর M এবং কোনো অক্ষের সাপেক্ষে তার জড়তার ভ্রামক /। এখন কল্পনা করা যাক,ঐ বস্তুর ভর M সমগ্র বস্তুর মধ্যে বণ্টিত না থেকে একটি বিন্দুতে কেন্দ্রীভূত আছে। ঘূর্ণন অক্ষ থেকে ঐ কেন্দ্রীভূত বস্তুর লক্ষ দূরত্ব যতো হলে ঐ অক্ষের সাপেক্ষে পুঞ্জিভূত বস্তুর জড়তার ভ্রামক সমগ্র বস্তুর জড়তার ভ্রামক/এর সমান হবে, সেই দূরত্বকে চক্রগতির ব্যাসার্ধ K বলে।
:- I = Mk2
বা, ... (4.19)
মাত্রা ও একক : চক্রগতির ব্যাসার্ধের মাত্রা ও একক যথাক্রমে দৈর্ঘ্যের মাত্রা ও এককের অনুরূপ। সুতরাং এর মাত্রা L এবং এসআই একক মিটার (m)।
তাৎপর্য: কোনো অক্ষের সাপেক্ষে একটি বন্ধুর চক্রগতির ব্যাসার্ধ 0.5 m বলতে বোঝায় ঐ অক্ষ থেকে 0.5m দূরে একটি বিন্দুতে বন্ধুটির সমগ্র স্তর পুঞ্জীভূত আছে ধরে জড়তার ভ্রামক হিসাব করলেই সমগ্র বস্তুটির জড়তার ভ্রামক পাওয়া যাবে।
জড়তার ভ্রামক সংক্রান্ত দুটি উপপাদ্যের সাহায্যে কোনো বস্তুর কোনো একটি বিশেষ অক্ষের সাপেক্ষে জড়তার ভ্রামকেরা মান বের করা যায়। উপপাদা দুটি হলো— (ক) লম্ব অক্ষ উপপাদ্য এবং (খ) সমান্তরাল অক্ষ উপপাদ্য।
ব্যাখ্যা : কোনো সমতল পাতের তলে অবস্থিত দুটি পরস্পর লম্ব অক্ষ OX ও OY (চিত্র ৪.৯) এর সাপেক্ষে যদি জড়তার ভ্রামক, Ix ও Iy, হয় তবে তাদের সমষ্টি (lx + ly) হবে ঐ দুই অক্ষের ছেদবিন্দু দিয়ে এবং পাতের ভলের অভিলম্বভাবে গমনকারী অক্ষ OZ সাপেক্ষে পাতের জড়তা ভ্রামক lz এর সমান।
অর্থাৎ lz = lx + ly
প্রমাণ: মনে করি, একটা পাতলা সমতল পাতের ওপর লম্বভাবে অবস্থিত OX এবং OY অক্ষদ্বয় O বিন্দুতে ছেদ করে। এ ছেদবিন্দু O দিয়ে অঙ্কিত OZ অক্ষটি সমতল পাতের ওপর লম্ব (চিত্র : ৪.৯)। মনে করি, এই পাতের ওপর P বিন্দুতে অবস্থিত একটি কণার ভর m । OY, OX এবং OZ অক্ষ থেকে P বিন্দুর লম্ব দূরত্ব যথাক্রমে x,y,z
:- z2 = x2 +y2
এখন ধরা যাক, পাতটি m1,m2,…m1.. ইত্যাদি ভরের অসংখ্য কণার সমন্বয়ে গঠিত। OY অক্ষ থেকে এ কণাগুলোর লম্ব দূরত্ব যথাক্রমে x1, x2,... xi... OX অক্ষ থেকে এদের লক্ষ দূরত্ব যথাক্রমে y1, y2 ... yi... এবং OZ- অক্ষ থেকে এদের দূরত্ব যথাক্রমে z1,z2…. zi... ইত্যাদি। সুতরাং OZ- অক্ষের সাপেক্ষে পাতটির জড়তার ভ্রামক,
ব্যাখ্যা: মনে করা যাক, M ভরের কোনো বস্তুর ভরকেন্দ্র G এর মধ্য দিয়ে অতিক্রান্ত AB অক্ষের সাপেক্ষে জড়তার ভ্রামক ।G তাহলে এই অক্ষ থেকে h দূরত্বে এবং এই অক্ষের সমান্তরাল কোনো অঙ্ক CD এর সাপেক্ষে ঐ বস্তুর জড়তার ভ্রামক হবে (চিত্র ৪.১০)
I = IG + Mh2
প্রমাণ: মনে করা যাক, M ভরের একটি বস্তুর ভরকেন্দ্র G এর মধ্য দিয়ে অতিক্রান্ত অক্ষ AB এবং এই অক্ষ থেকে দূরত্বে এবং এই অক্ষের সমান্তরাল অক্ষ CD ধরা যাক, P বিন্দুতে অবস্থিত। একটি কণার ভর m
AB অক্ষ থেকে এই কণাটির লম্ব দূরত্ব x হলে CD অক্ষ থেকে এর লম্ব দূরত্ব হবে h+x । এখন ধরা যাক, বস্তুটি m1,m2.....mi… ইত্যাদি ভরের অসংখ্য কণার সমন্বয়ে গঠিত। AB অক্ষ থেকে এই কণাগুলোর লম্ব দূরত্ব যথাক্রমে x1,x2…xi.. ইত্যাদি হলে CD অক্ষ থেকে এদের লম্ব দূরত্ব হবে যথাক্রমে
(x1+h), (x2+ h),... (x1 + h) ইত্যাদি।
এখন CD অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক,
চলন গতির ক্ষেত্রে আমরা দেখেছি m ভরের কোনো বস্তু বেগে গতিশীল হলে তার ভরবেগ তথা রৈখিক ভরবেগ একটি গুরুত্বপূর্ণ রাশি। ঘূর্ণনগতির ক্ষেত্রে ভরবেগের অনুরূপ রাশি হচ্ছে কৌণিক ভরবেগ। কোনো বিন্দুর m সাপেক্ষে ভরবেগের ভ্রামকই হচ্ছে কণাটির কৌণিক ভরবেগ।
ব্যাখ্যা : ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর এবং ঐ কণার ভরবেগ হলে, বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগ হচ্ছে,
... (4.32)
ঘূর্ণন কেন্দ্র থেকে দূরত্বে কোনো কণার ভরবেগ p হলে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান L হবে-
L = rp sin
বা, L = pr sin
এখানে হচ্ছে এবং ' এর অন্তর্ভুক্ত কোণ। কিন্তু r sin হচ্ছে ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়া রেখার লম্ব দূরত্ব (চিত্র : ৪-১৮)। সুতরাং কোনো কণার ভরবেগ এবং ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান ।
দিক : কৌণিক ভরবেগ একটি ভেক্টর রাশি। এর দিক ×এর দিকে।
একটি ডানহাতি স্কুকে এবং 'এর সমতলে লম্বভাবে স্থাপন করে থেকে ' এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।
মাত্রা ও একক : কৌণিক ভরবেগের মাত্রা হচ্ছে ভরবেগ × দূরত্বের মাত্রা অর্থাৎ ML2T-1 এবং এর একক হচ্ছে kg m2s-1
তাৎপর্য : কোনো বস্তুর কৌণিক ভরবেগ 30 kg ms-1 বলতে বোঝায় ঐ বস্তুর কৌণিক ভরবেগ 1 kgm2
জড়তার ভ্রামকবিশিষ্ট কোনো বস্তুর কৌণিক বেগ 30 rad s-1 হলে যে কৌণিক ভরবেগ হবে তার সমান।
বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর কৌণিক ভরবেগ হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।
ধরা যাক, একটি বস্তু কোনো একটি অক্ষের সাপেক্ষে সমকৌণিক দ্রুতিতে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m1 ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r1 এবং কণাটির বেগ v1 হলে
ঘূর্ণন অক্ষের সাপেক্ষে কণাটির কৌণিক ভরবেগ, P1r1 = m1v1r1
=m1 r21 [ :- v₁ = r₁ ]
= m1r21
অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m2 ভরের কৌণিক ভরবেগ = m2r21। এভাবে প্রতিটি বস্তুকণার জন্য কৌণিক = ভরবেগ বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির কৌণিক ভরবেগ L পাওয়া যাবে।
L= ωm₁r₁² + ωm₂r₂² + ωm3r3²+...…
= ω ( m₁r₁² + m₂r₂² + m3r3² +…..)
=….. (4.33)
বা,
:- এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক . কৌণিক ভরবেগ = জড়তার ভ্রামক x কৌণিক বেগ।
ব্যাখ্যা : নিউটনের প্রথম ও দ্বিতীয় সূত্র হচ্ছে একটি মাত্র (single) বস্তু সম্পর্কে, অপরপক্ষে তৃতীয় সূত্র দুটি বস্তুর সাথে সম্পর্কিত। ধরা যাক, a ও b দুটি বস্তু পরস্পরের ওপর আকর্ষণ বল প্রয়োগ করে (চিত্র-৪.১)
ধরা যাক, 1 হলো প্রথম বস্তু a এর ওপর দ্বিতীয় বস্তু b কর্তৃক প্রযুক্ত আকর্ষণ বল এবং হলো দ্বিতীয় বন্ধু b-এর ওপর প্রথম বন্ধু a কর্তৃক প্রযুক্ত আকর্ষণ বল ।
নিউটনের তৃতীয় সূত্রানুসারে আমরা পাই,
= - 1 ……(4.4)
প্রকৃতিতে বলসমূহ জোড়ায় জোড়ায় বিরাজ করে। একটি একক (single) বলের কোনো অস্তিত্ব নেই।
1 এবং বল দুটিকে অনেক সময় ক্রিয়া-প্রতিক্রিয়া জোড় বলা হয়। একটি বলকে বলা হয় ত্রিনা বল, অপর বলকে বলা হয় প্রতিক্রিয়া বল। কোন বলটি ক্রিয়া আর কোনটি প্রতিক্রিয়া সেটা কোনো ব্যাপার নয়। যেকোনো একটি ক্রিয়া হলেই অপরটি প্রতিক্রিয়া হবে। নিউটনের গতির তৃতীয় সূত্র প্রকৃতিতে বিরাজমান কর লো অন্তর্নিহিত প্রতিসাম্য উন্মোচন করে।
ক্রিয়া ও প্রতিক্রিয়া বল সবসময়ই দুটি ভিন্ন বস্তুর ওপর ক্রিয়া করে কখনোই একই বস্তুর ওপর ক্রিয়া করে না। প্রতিক্রিয়া বলটি ততক্ষণই থাকবে যতক্ষণ পর্যন্ত ক্রিয়া কে দিয়া থেমে গেলে প্রতিক্রিয়াও থেমে যাবে। এ ক্রিয়া ও প্রতিক্রিয়া, বস্তুগুলোর সাম্যতা বা একে অপরের সংস্পর্শে থাকা বা না থাকার ওপর নির্ভরশীল নয়—সবই বর্তমান থাকে।
নিউটনের গতির প্রথম সূত্র থেকে আমরা জানি যে, কোনো বস্তুর ওপর প্রযুক্ত নিট (net) বল যদি শূন্য হয়, তাহলে বস্তুটি সরল পথে সমদ্রুতিতে চলতে থাকে অর্থাৎ এর বেগ ধ্রুব থাকে। সময়ের সাপেক্ষে বেগ যদি ধ্রুব হয়, তাহলে ভরবেগ - সময়ের সাপেক্ষে স্থির থাকে।
অন্য কথায়, কোনো বস্তুর ওপর নিট বল শূন্য হলে, বস্তুটির ভরবেগ সংরক্ষিত থাকে।
একাধিক বস্তুর সমন্বয়ে গঠিত কোনো ব্যবস্থার (system) ওপর যদি প্রযুক্ত নিট বাহ্যিক বল শূন্য হয়, তাহলে সময়ের সাপেক্ষে ব্যবস্থাটির মোট ভরবেগ পরিবর্তিত হয় না। একে ভরবেগের সংরক্ষণ সূত্র বা নিত্যতার সূত্র বলা হয়।
যেহেতু আগেই উল্লেখ করা হয়েছে ভরবেগ বলতে আমরা রৈখিক ভরবেগই বুঝে থাকি, সুতরাং ভরবেগের সংরক্ষণ সূত্র বলতেই আমরা রৈখিক ভরবেগের সংরক্ষণ সূত্রকে বুঝি। উল্লেখযোগ্য যে, কৌণিক ভরবেগের জন্য আলাদা সংরক্ষণ সূত্র আছে যা ৪.২০ অনুচ্ছেদে আলোচনা করা হয়েছে।
ব্যাখ্যা : ধরা যাক, কোনো একটি ব্যবস্থার আদি ভরবেগ i , পরবর্তী কোনো এক সময় ব্যবস্থাটির ভরবেগ f তাহলে ভরবেগের সংরক্ষণ সূত্র অনুসারে, i = f…. (4.5)
যেহেতু ভরবেগ একটি ভেক্টর রাশি, সুতরাং সংরক্ষিত হওয়ার অর্থ এর মান ও দিক উভয়েই অপরিবর্তিত থাকা। সমগ্র ব্যবস্থার ভরবেগ সংরক্ষিত বা স্থির থাকলেও এর অন্তর্গত স্বতন্ত্র বস্তুগুলোর ভরবেগ কিন্তু পরিবর্তিত হতে পারে। ব্যবস্থাটির অভ্যন্তরীণ বলসমূহ এর বন্ধুগুলোর ভরবেগ স্বতন্ত্রভাবে পরিবর্তন করতে পারে, কিন্তু অভ্যন্তরীণ বল ব্যবস্থাটির মোট ভরবেগের কোনো পরিবর্তন করতে পারে না।
দুটি বস্তু বিবেচনা করা যাক (চিত্র: ৪.২): বস্তুগুলো একে অপরের ওপর বল প্রয়োগ করতে পারে, কিন্তু এদের ওপর কোনো বাহ্যিক বল নেই। ধরা যাক, কোনো এক সময় বস্তু সংঘর্ষে লিপ্ত হলো।
ধরা যাক, এই সংঘর্ষে হচ্ছে প্রথম বস্তুর ওপর দ্বিতীয় বস্তু কর্তৃক প্রযুক্ত বল এবং হচ্ছে দ্বিতীয় বস্তুর ওপর প্রথম বস্তু কর্তৃক প্রযুক্ত বল। ধরা যাক, কোনো সময় t তে প্রথম বস্তুর ভরবেগ এবং দ্বিতীয় বস্তুর ভরবেগ আমরা প্রতিটি বস্তুর ক্ষেত্রে নিউটনের দ্বিতীয় সূত্র প্রয়োগ করে পাই,
এখানে i এবং f পাদাঙ্ক যথাক্রমে আদি (initial) এবং শেষ (Final) অবস্থা নির্দেশ করে।
সুতরাং দেখা যায় যে, সংঘর্ষের আগে কোনো ব্যবস্থার ভরবেগের ভেক্টর সমষ্টি আর সংঘর্ষের পরে ভরবেগের ভেক্টর: সমষ্টি সর্বদা সমান থাকে। এটিই ভরবেগের সংরক্ষণ বা নিত্যতার
একটি একমাত্রিক সংঘর্ষের কথা বিবেচনা করা যাক। ধরা যাক, m1, ও m2 ভরের দুটি বস্তু সরলরেখা বরাবর চলতে চলতে কোনো এক সময় সংঘর্ষে লিপ্ত হয়। সংঘর্ষের আগে তাদের বেগ যথাক্রমে v1i ও v2i এবং সংঘর্ষের পরে তাদের বেগ যথাক্রমে v1f ও v2f। ভরবেগের সংরক্ষণ সূত্র অনুসারে (4.7) সমীকরণটি হবে,
মনে করি, এক ব্যক্তি ভূমির ওপর দাঁড়িয়ে আছেন। লোকটির পা ভূমির ওপর তার ওজনের সমান বল প্রয়োগ করে। এ বন ভূমির ওপর লোকটির ওজনের ক্রিয়া। যতক্ষণ পর্যন্ত লোকটি স্থিরভাবে দাঁড়িয়ে থাকবেন ততক্ষণ পর্যন্ত ভূমিও সমান বলে লোকটির পা-কে খাড়া ওপরের দিকে ঠেলবে। ভূমির এ বল হলো প্রতিক্রিয়া। এ অবস্থায় ত্রিনা ও প্রতিক্রিয়া বল পরস্পরের সমান ও বিপরীত হবে। লোকটি যখন কোনো কর্নমান্ত ভূমির ওপর বা পানির ওপর দাঁড়াতে যান তখন ঘটনা অন্য রকম ঘটে। লোকটি নিচের দিকে নামতে থাকেন বা ডুবে যেতে থাকেন। কর্দমাক্ত ভূমি বা পানি সমান ও বিরীতমুখী প্রতিক্রিয়া বল দেয়া সত্ত্বেও এরূপ ঘটার কারণ হলো পানির অণুগুলোর মধ্যে আন্তঃআণবিক বল কঠিন ভূমির আন্তঃআণবিক বলের চেয়ে অনেক কম। লোকটির ওজন পানির ওপর ক্রিয়া করায় পানির অণুগুলো সহজে স্থানচ্যুত হয়ে আন্তঃআণবিক বৰধান বৃদ্ধি করে ফলে লোকটি নিচের দিকে নামতে থাকেন। এ জন্যই কর্দমাক্ত বা বালুকাময় জায়গায় হাঁটা কিছুটা অসুবিধাজনক।
হাঁটার সময় আমরা সামনের পা দ্বারা মাটিতে খাড়াভাবে বল দেই আর পেছনের পা দ্বারা তির্যকভাবে PQ (চিত্র: ৪৩) বরাবর মাটিতে বল দেই। পেছনের পায়ের PQ বরাবর দেয় বলের ভূমি প্রতিক্রিয়া PR বরাবর কাজ করে। এখন এ প্রতিক্রিয়া বলকে অনুভূমিক ও উল্লখ উপাংশে ভাগ করা যায়। অনুভূমিক উপাংশ (R cos ) আমাদেরকে সামনের দিকে এগিয়ে নেয় আর উল্লম্ব উপাংশ (R sin ) শরীরের ওজন বহন করতে সহায়তা করে।
আমরা দেখতে পাই দৌড় প্রতিযোগিতার দৌড়বিদরা দৌড়ের শুরুতে সামনের দিকে ঝুঁকে থাকেন। ফলে দৌড় শুরু করার সময় তারা তির্যকভাবে মাটিতে বল প্রয়োগ করেন। ফলে ভূমির প্রতিক্রিয়াও তির্যকভাবে সামনের দিকে ক্রিয়া করে। এ প্রতিক্রিয়ার অনুভূমিক উপাংশ দৌড়বিদকে সামনের দিকে এগিয়ে নিতে সাহায্য করে।
তোমাদের যদি প্রশ্ন করা হয় তোমরা কি কেউ ঘোড়ার গাড়ি দেখেছো? প্রায় সবাই এক বাক্যে বলবে না। কারণ বিজ্ঞানের উন্নতির সাথে সাথে ঘোড়ার গাড়ির প্রচলন এখন আর কোথাও নেই বললেই চলে। তবে নিউটনের তৃতীয় সূত্রের ব্যবহারের ঐতিহাসিক গুরুত্ব হিসেবে শিক্ষাক্রমে হয়তো ঘোড়ার গাড়ির ঘটনা বর্ণনা করতে বলা হয়েছে। ঘোড়া যখন গাড়িকে টানে তখন গাড়িও সমান বলে ঘোড়াকে টানে। তাহলে গাড়ি চলে কীভাবে? মনে করি, C গাড়িটিকে H ঘোড়ায় টানছে (চিত্র ৪.৪)। ঘোড়ার সাথে গাড়িটি একটি দড়ি দ্বারা সংযুক্ত। ঘোড়া গাড়িটিকে সামনের দিকে টানার জন্য নড়ির মধ্য দিয়ে গাড়ির ওপর যে টান T প্রয়োগ করবে সেটা হচ্ছে জিয়া বল। নিউটনের তৃতীয় সূত্রানুসারে গাড়িও দড়ির মাধ্যমে ঘোড়ার ওপর সমান ও বিপরীত টান T প্রয়োগ করবে। এ অবস্থায় গাড়ি চলছে কীভাবে এ প্রশ্ন খুব স্বাভাবিকভাবেই মনে আসবে। আসলে ঘোড়া এগোবার জন্য পা দ্বারা তির্যকভাবে মাটিতে আঘাত করে ফলে ভূমিও একটি
সমান প্রতিক্রিয়া বল R ঘোড়ার পায়ের ওপর প্রয়োগ করে, এ প্রতিক্রিয়া বল অনুভূমিক ও উল্লখ উপাংশে বিভক্ত হয়ে যায়। উল্লম্ব উপাংশ V ঘোড়ার ওজনকে বহন করে আর অনুভূমিক উপাংশ F ঘোড়াকে সামনের দিকে এগিয়ে নিতে চেষ্টা করে। যখন এই F গাড়ির ঢাকা ও ভূমির মধ্যকার ঘর্ষণ বল f এর চেয়ে বেশি হয় তখনই শুধু গাড়িটি সামনের দিকে এগোবে।
এককালের নদীমাতৃক বাংলাদেশে বড় বড় মাল বোঝাই নৌকার দেখা পাওয়া যেত। স্রোতের অনুকূলে দাঁড় টেনে আর স্রোতের প্রতিকূলে এন টেনে তাদের চলতে হতো। আজকাল ইঞ্জিনচালিত নৌকার বা ট্রলারের প্রচলন হওয়ায় এবং নদী ও খালে বিপুল সংখ্যক সেতু, পুল, কালভার্ট তৈরি হওয়ায় অযান্ত্রিক নৌযানে তথা নৌকায়ও আর শুন টানা হয় না। কিন্তু নানা ঐতিহাসিক গুরুত্ব বিবেচনা করে হয়তো শিক্ষাক্রমে এ উদাহরণ অন্তর্ভুক্ত করা হয়েছে।
একখানি দড়ি দিয়ে কুল থেকে টেনে নৌকা সামনের দিকে এগিয়ে নেয়াকে গুনটানা বলে। এ ঘটনাকে ভেক্টররাশির বিভাজন ও নিউটনের গতির তৃতীয় সূত্রের সাহায্যে ব্যাখ্যা করা যায়। ধরা যাক, OR বরাবর দড়ির টানের বল ক্রিয়া করছে (চিত্র : ৪.৫) এ বল বিভাজিত হয়ে একটি বল নৌকার দৈর্ঘ্য বরাবর Oএর দিকে ক্রিয়া করে নৌকাকে সামনের দিকে এগিয়ে নেয়। বলের অন্য উপাংশটি OA-এর লম্ব বরাবর OB-এর দিকে ক্রিয়া করে নৌকাকে কুলের দিকে নিতে চায় । পানির বিপরীত প্রতিক্রিয়া ও হালের সাহায্যে এ বলকে নাকচ করা হয়।
গুলি ছোঁড়ার পর বন্ধুককে পেছনের দিকে সরে আসতে দেখা যায়। ভরবেগের নিত্যতার সূত্র থেকে এর ব্যাখ্যা পাওয়া যায়। গুলি ছোঁড়ার পূর্বে বন্দুক ও গুলি উভয়ের বেগ শূন্য থাকে কাজেই তখন তাদের ভরবেগের সমষ্টি শূন্য। গুলি ছোঁড়ার পর সামনের দিকে গুলির কিছু ভরবেগ উৎপন্ন হয়। ভরবেগের নিত্যতার সূত্রানুযায়ী গুলি ছোঁড়ার আগের ভরবেগের সমষ্টি পরের ভরবেগের সমষ্টির সমান হতে হবে। সুতরাং গুলি ছোঁড়ার পরের ভরবেগের সমষ্টি সমান হতে হলে অর্থাৎ শূনা হতে হলে বন্দুকেরও গুলির সমান ও বিপরীতমুখী একটা ভরবেগের সৃষ্টি হতে হবে। ফলে বন্দুককেও পেছনের দিকে সরে আসতে দেখা যায়।
ধরা যাক, M ভরের বন্দুক থেকে গুলি ছোঁড়ার পর m ভরের গুলিটি v বেগে বেরিয়ে যাচ্ছে। ধরা যাক, বন্দুকটির বেগ V। গুলি ছোঁড়ার আগে বন্দুক ও গুলির ভরবেগের সমষ্টি শূন্য। গুলি ছোঁড়ার পরে বন্দুক ও গুলির মোট ভরবেগ হবে
MV + mv
বা, MV + mv = 0
বা, MV = -mv
:- ... ..(4.10)
(4.10) সমীকরণ থেকে দেখা যায় যে, বন্দুক ও গুলির বেগ পরস্পর বিপরীতমুখী। অর্থাৎ গুলি ছোঁড়া হলে বন্দুকের পশ্চাৎ বেগের মান হবে
আরও দেখুন...