আমরা জানি প্রত্যেক বস্তু যে অবস্থায় আছে সেই অবস্থা বজায় রাখতে চায় অর্থাৎ বস্তু স্থির থাকলে স্থির থাকতে চায় আর গতিশীল থাকলে গতিশীল থাকতে চায়। বস্তুর এ ধর্মকে জড়তা বলে। বস্তুর এ অবস্থার পরিবর্তন ঘটাতে হলে বাইরে থেকে একটা কিছু প্রয়োগ করতে হয়।
বইটি তার অবস্থানের পরিবর্তন করছে অর্থাৎ বইটি গতিশীল হচ্ছে। তুমি যখন বস্তুটিকে ঠেলো বা টানো তখন তুমি বস্তুটির উপর কিছু একটা প্রয়োগ কর। সাধারণ ভাষায় বলতে গেলে এই ঠেলা (Push) এবং টানাই (Pull) হচ্ছে বল। তোমার হাত ও বস্তুর প্রত্যক্ষ সংস্পর্শের ফলশ্রুতি হচ্ছে বল। কোনো বস্তুর ওপর প্রযুক্ত বল হচ্ছে ঐ বস্তু এবং অন্য কোনো বস্তুর পারস্পরিক ক্রিয়ার ফল। কোনো বস্তুর পরিপার্শ্ব যা অন্যান্য বস্তুর সমন্বয়ে গঠিত, ঐ বস্তুর ওপর বল প্রয়োগ করে যেমন, তুমি যদি কোনো বইকে হাত দিয়ে ধরে রাখ, তাহলে বইয়ের পরিবেশের গুরুত্বপূর্ণ বস্তুগুলো হচ্ছে তোমার হাত, যা বইটির ওপর ঊর্ধ্বমুখী বল প্রয়োগ করে; এবং পৃথিবী যা বইটির ওপর নিম্নমুখী বল প্রয়োগ করে (বই-এর ওজন)।
আমাদের সাধারণ অভিজ্ঞতা বলে কোনো কিছু ঠেলতে বা টানতে, বহন করতে বা নিক্ষেপ করতে বলের প্রয়োজন হয়। আমরা আমাদের নিজের উপরও বলের প্রভাব অনুভব করতে পারি যখন কেউ আমাদেরকে ধাক্কা দেয় বা কোনো গতিশীল বস্তু আমাদেরকে আঘাত করে অথবা মেলার মাঠে যখন আমরা কোনো নাগরদোলায় চড়ে বসি। এসবই হচ্ছে বলের স্বজ্ঞামূলক ধারণা।
বলের স্বজ্ঞামূলক ধারণা থেকে প্রকৃত বৈজ্ঞানিক ধারণায় উপনীত হওয়া কিন্তু খুব সহজে হয়নি। অ্যারিস্টটলের মতো প্রাচীন বিজ্ঞ চিন্তাবিদদেরও বল সম্পর্কে অনেক ভ্রান্ত ধারণা ছিল। বল সংক্রান্ত প্রথম বৈজ্ঞানিক ধারণার অবতারণা করেন গ্যালিলিও। স্যার আইজ্যাক নিউটনের গতি বিষয়ক সূত্রাবলি থেকেই বল সংক্রান্ত সঠিক বৈজ্ঞানিক ধারণা পাওয়া যায়। মহাকর্ষ বলের সূত্রের সাহায্যে তিনি বল সম্পর্কে একটি পরিপূর্ণ বৈজ্ঞানিক ধারণা দেন।
স্থূল জগতে আমরা মহাকর্ষ বল ছাড়াও আরো নানা রকম বলের সাথে পরিচিত হই, যেমন পেশি শক্তি, দুটি বস্তুর মধ্যকার স্পর্শ বল যেমন ঘর্ষণ বল, সঙ্কুচিত বা প্রসারিত স্প্রিং কর্তৃক প্রযুক্ত বল, টানা তার বা সুতার উপর বল, কঠিন বস্তু যখন প্রবাহীর সংস্পর্শে থাকে তখন প্লবতা বা সান্দ্র বল, প্রবাহীর চাপের কারণে বল বা তরলের পৃষ্ঠটানজনিত বল ইত্যাদি। দুটি বস্তু পরস্পরের সংস্পর্শে না থাকলেও বল ক্রিয়াশীল হতে পারে, যেমন মহাকর্ষ বল, বা দুটি আহিত বস্তুর মধ্যকার বল। সূক্ষ্ম জগতে আমরা প্রোটন ও নিউট্রনের মধ্যে নিউক্লিয় বল, আন্তঃপারমাণবিক বা আন্তঃআণবিক বলের কথাও আমরা জানি ।
একটি রাস্তার বাঁকের ব্যাসার্ধ 50m। রাস্তার প্রশ্ন 5m এবং বাইরের প্রান্ত ভিতরের প্রান্ত অপেক্ষা 0.25m উঁচু।
একটি চাকার জড়তার ভ্রামক 2 kg m² । চাকাটি মিনিটে 30 বার ঘুরছে। [
সাধারণ অভিজ্ঞতার আলোকে বলের নিম্নোক্ত চারটি বৈশিষ্ট্য উল্লেখ করা যায়।
যেহেতু টানা বা ঠেলার মান ও দিক উভয়ই আছে, তাই বল একটি ভেক্টর রাশি। বলের দিক টানা বা ঠেলার দিকে।
যদি A বস্তু B বস্তুর ওপর একটি বল প্রয়োগ করে, তাহলে B বস্তুও A বস্তুর ওপর একটি বল প্রয়োগ করে।
যখন কোনো ক্রিকেট ব্যাট দিয়ে ক্রিকেট বলকে আঘাত করা হয়, তখন ব্যাটটি ক্রিকেট বলের ওপর একটি বল প্রয়োগ করে। ক্রিকেট বলটিও কিন্তু ব্যাটের ওপর একটি বল প্রয়োগ করে।
যখন তুমি ফুটবলকে কিক্ কর, তখন তোমার পা ফুটবলটির সংস্পর্শে থাকা অবস্থায় তার উপর বল প্রয়োগ করে তার বেগের পরিবর্তন ঘটায়।
আমরা যখন কোনো রাবারের টুকরা বা স্প্রিং-এর দুই প্রান্ত ধরে টান দেই অর্থাৎ বল প্রয়োগ করি, তখন তা বিকৃত হয় ।
Fundamental Force
বিংশ শতাব্দীর পদার্থবিজ্ঞানের গুরুত্বপূর্ণ অন্তর্জান বা উপলব্ধি হচ্ছে যে ইতোপূর্বে আমরা যে সকল বলের উল্লেখ করেছি। এবং আরো অনুল্লেখিত যে অসংখ্য বল রয়েছে সেগুলো কোনোটিই কিন্তু স্বাধীন বা মৌলিক নয়। এগুলোর উদ্ভব প্রকৃতির চারটি মৌলিক বল এবং তাদের মধ্যকার ক্রিয়া প্রতিক্রিয়া বা মিথস্ক্রিয়া বা অন্তক্রিয়া (Interaction) থেকে।
এ মৌলিক বলগুলো হলো :
ভরের কারণে মহাবিশ্বের যেকোনো দুটি বস্তুর মধ্যকার পারস্পরিক আকর্ষণ বলকে মহাকর্ষ বলে। কোনো বস্তুর ওজন হচ্ছে মহাকর্ষ বলের ফলশ্রুতি। যদিও স্থল বস্তুগুলোর মধ্যকার মহাকর্ষ বল খুবই তাৎপর্যপূর্ণ হতে পারে, কিন্তু চারটি মৌলিক বলের মধ্যে মহাকর্ষ বল হচ্ছে দুর্বলতম বল । অবশ্য এ কথাটি প্রযোজ্য হয় মৌলিক কণাগুলোর পারস্পরিক বল বিবেচনা করে তাদের আপেক্ষিক সবলতার বিচারে। যেমন, কোনো হাইড্রোজেন পরমাণুতে ইলেকট্রন ও প্রোটনের মধ্যকার মহাকর্ষ বল হচ্ছে 3.6 x 10-17 N; অপরপক্ষে এই কণা দুটির মধ্যকার স্থির তড়িৎ বল হচ্ছে 8.2 x 10-8 N। এখানে আমরা দেখি যে, স্থির তড়িৎ বলের তুলনায় মহাকর্ষ বল তাৎপর্যপূর্ণ নয় ।
মহাকর্ষ একটি সার্বজনীন বল। এ মহাবিশ্বের প্রত্যেক বন্ধুই অন্য বস্তুর কারণে এ বল অনুভব করে। এ বলের পাল্লা হচ্ছে অসীম। ভূ-পৃষ্ঠের সকল বস্তুই পৃথিবীর কারণে এ বল অনুভব করে। মহাকর্ষ বল সুনির্দিষ্টভাবে পৃথিবীর চারদিকে চাঁদের বা বিভিন্ন কৃত্রিম উপগ্রহের ঘূর্ণন, সূর্যের চারদিকে পৃথিবীর বা বিভিন্ন গ্রহের গতিকে নিয়ন্ত্রণ করে থাকে। নক্ষত্র, গ্যালাক্সি বা নক্ষত্রপুঞ্জ গঠনেও মহাকর্ষ বল গুরুত্বপূর্ণ ভূমিকা রাখে। বিজ্ঞানীরা ধারণা করেন যে বস্তুদ্বয়ের মধ্যে গ্রাভিটন নামে এক প্রকার কণার পারস্পরিক বিনিময়ের দ্বারা এই বল ক্রিয়াশীল হয়। অবশ্য অভিটনের অস্তিত্বের কোনো প্রমাণ এখনো পাওয়া যায়নি।
দুটি আহিত কণা তাদের আধানের কারণে একে অপরের ওপর যে আকর্ষণ বা বিকর্ষণ বল প্রয়োগ করে তাকে তাড়িতচৌম্বক বল বলে। তড়িৎ বল এবং চৌম্বক বল ঘনিষ্ঠভাবে সম্পর্কিত। যখন দুটি আহিত কণা স্থির থাকে তখন তাদের ওপর কেবল তড়িৎ বল ক্রিয়া করে। যখন আহিত কণাগুলো গতিশীল থাকে তখনকার একটি অতিরিক্ত তড়িৎ বল হচ্ছে চৌম্বক বল।
সাধারণভাবে তড়িৎ প্রভাব ও চৌম্বক প্রভাব অবিচ্ছেদ্য সে কারণে বলটিকে তাড়িতচৌম্বক বল নামে অভিহিত করা হয়। মহাকর্ষ বলের ন্যায় তাড়িতচৌম্বক বলের পাল্লাও অসীম পর্যন্ত বিস্তৃত এবং এ বলের ক্রিয়ার জন্য কোনো মাধ্যমেরও প্রয়োজন হয় না। তাড়িতচৌম্বক বল মহাকর্ষ বলের চেয়ে অনেক বেশি শক্তিশালী। উদাহরণস্বরূপ দুটি প্রোটনের মধ্যকার তাড়িতচৌম্বক বল এদের মধ্যকার মহাকর্ষ বলের চেয়ে 1036 গুণ বেশি।
আমরা জানি পদার্থ ইলেকট্রন, প্রোটন নামক আহিত কণা দিয়ে গঠিত। যেহেতু তাড়িতচৌম্বক বল মহাকর্ষ বলের চেয়ে অনেক বেশি শক্তিশালী তাই পারমাণবিক ও আণবিক ক্ষেত্রের সকল ঘটনা এই বল দ্বারাই নিয়ন্ত্রিত হয়। অবশ্য অন্য দুটি বল কেবলমাত্র নিউক্লিয় ক্ষেত্রে প্রযোজ্য। তাই বলা যায়, অণুপরমাণুর গঠন, রাসায়নিক বিক্রিয়া, পদার্থের তাপীয় ও অন্যান্য ধর্ম তাড়িতচৌম্বক বলের ফল। লক্ষণীয় যে, আমাদের এই স্থল জগতের যাবতীয় বলসমূহ (মহাকর্ষ বল ব্যতীত) তড়িৎ বলের বহিঃপ্রকাশ। ঘর্ষণ বল, স্পর্শ বল, স্প্রিং বা অন্যান্য বিকৃত বস্তুর মধ্যকার বল আহিত কণাগুলোর তড়িৎ বলেরই ফলশ্রুতি। ফোটন নামক এর প্রকার ভরহীন ও আধানহীন কণার পারস্পরিক বিনিময়ের ফলে এই বল কার্যকর হয়। মহাকর্ষ বল সর্বদা আকর্ষণধর্মী । পক্ষান্তরে তাড়িতচৌম্বক বল আকর্ষণ বিকর্ষণ উভয়ধর্মী হতে পারে। আবার কোনো বস্তুর ভর কেবলমাত্র ধনাত্মক হতে পারে কিন্তু আধান ধনাত্মক বা ঋণাত্মক উভয় হতে পারে। বেশিরভাগ ক্ষেত্রে পদার্থ তড়িৎ নিরপেক্ষ অর্থাৎ ব্যাপকভাবে তড়িৎ বল শূন্য জার সকল জাগতিক ঘটনা মহাকর্ষ বল দ্বারাই নিয়ন্ত্রিত হয় ।
সবল নিউক্লিয় বল প্রোটন ও নিউট্রনকে নিউক্লিয়াসে আবদ্ধ রাখে। এটা স্পষ্ট যে, কোনো ধরনের আকর্ষণীয় বল না থাকলে প্রোটনসমূহের মধ্যকার বিকর্ষণী বলের কারণে নিউক্লিয়াস অস্থিতিশীল হয়ে যেতো। এ আকর্ষণী বল মহাকর্ষীয় বল হতে পারে না কারণ তড়িত বলের তুলনায় মহাকর্ষীয় বল অতি অকিঞ্চিতকর। সুতরাং নিউক্লিয়াসের স্থায়িত্বের জন্যে একটি নতুন বলের প্রয়োজন হয় আর সেই বলই হচ্ছে সবল নিউক্লিয় বল যা সকল মৌলিক বলগুলোর মধ্যে সর্বাপেক্ষা শক্তিশালী। তাড়িতচৌম্বক বল থেকে এটি প্রায় 100 গুণ বেশি শক্তিশালী। এটি আধান নিরপেক্ষ এবং এটি সমানভাবে প্রোটন- প্রোটন, নিউট্রন-নিউট্রন এবং প্রোটন-নিউট্রনের মধ্যে বোসন কণার পারস্পরিক বিনিময়ে কার্যকর হয়। পরবর্তীতে দেখা যায় প্রোটন ও নিউট্রন উভয়ই কোয়ার্ক নামক আরো মৌলিক কণিকা দিয়ে গঠিত আর কোয়া কণিকাগুলো প্রান নামে এক ধরনের আঠালো কণার পারস্পরিক বিনিময়ের ফলে উৎপন্ন তীব্র বলের প্রভাবে একত্রিত থাকে। এর পারা অত্যন্ত কম, প্রায় নিউক্লিয়াসের ব্যাসার্ধের সমতুল্য অর্থাৎ প্রায় 10-15 m এ বল নিউক্লিয়াসের স্থায়িত্বের নিয়ামক। উল্লেখ্য যে, ইলেকট্রনের মধ্যে এ ধরনের কোনো বল নেই।
দুর্বল নিউক্লিয় বলের উদ্ভব হয় যখন কোনো নিউক্লিয়াস থেকে রশ্মির নির্গমন ঘটে। রশ্মির নির্গমনের সময় নিউক্লিয়াস থেকে একটি ইলেকট্রন এবং একটি অনাহিত কণা নিউট্রিনো (neutrino) নির্গত হয়। দুর্বল নিউক্লিয় বল মহাকর্ষ বলের ন্যায় অত দুর্বল নয় তবে সবল নিউক্লিয় বল ও তাড়িতচৌম্বক বলের চেয়ে অনেকটাই দুর্বল। এ বলের পাল্লা খুবই কম প্রায় 10-16m থেকে 10-18 m বিজ্ঞানীরা ধারণা করেন গেজ বোসন কণার পারস্পরিক বিনিয়োগের ফলে এই বল কার্যকর হয়।
সকল মৌলিক বলের জন্য বাহক কণিকা প্রয়োজন। তাড়িতচৌম্বক বলের জন্য এরকম বাহক কণিকা হচ্ছে ফোটন। এর অস্তিত্ব আমরা গত শতকের গোড়াতেই জানতে পেরেছি। সবল নিউক্লিয় বলের জন্য বাহক কণিকা হচ্ছে গুঅন (gluon)। মহাকর্ষ বলের জন্যও একটি বাহক কণিকা গ্রাভিটনের (graviton) প্রস্তাব করা হয়েছে। যদিও এখনো পর্যন্ত এর অস্তিত্বের কোনো প্রমাণ পাওয়া যায়নি। আর দুর্বল নিউক্লিয় বলের জন্য বাহক কণিকাগুলো হচ্ছে W+, W এবং Z বোসন যা গেজ বোসন (gauge boson) নামেও পরিচিত।
প্রত্যেক বস্তু যে অবস্থায় আছে সেই অবস্থায় থাকতে চায় অর্থাৎ বস্তু স্থির থাকলে স্থির থাকতে চায় আর গতিশীল থাকলে গতিশীল থাকতে চায়। বস্তুর এই স্থিতিশীল বা গতিশীল অবস্থার পরিবর্তন ঘটাতে হলে বল প্রয়োগ করতে হয়। পদার্থের নিজস্ব অবস্থা বজায় রাখতে চাওয়ার এই যে ধর্ম তাই জড়তা।
ভর (mass) হচ্ছে পদার্থের জড়তার পরিমাপ। অন্য কথায় কোনো একটি বস্তুর তার বেগের পরিবর্তনকে বাধা দেয়ার পরিমাপই হচ্ছে ভর। একটি চলমান খালি ভ্যান গাড়িকে থামানোর চেয়ে ইট বোঝাই চলমান ভ্যান গাড়িকে থামানো অনেক বেশি কষ্টকর। খালি ভ্যানের চেয়ে ইট ও ভ্যানের মিলিত ভর বেশি বলেই এটি ঘটে। ভর একটি স্কেলার রাশি এবং একাধিক ভরকে সাধারণ গাণিতিক নিয়মে যোগ করা যায়।
১৬৮৭ সালে স্যার আইজ্যাক নিউটন তাঁর অমর গ্রন্থ “ন্যাচারালিস ফিলোসোফিয়া প্রিন্সিপিয়া ম্যাথেমেটিকা”তে বস্তুর ভর, গতি ও বলের মধ্যে সম্পর্ক স্থাপন করে তিনটি সূত্র প্রকাশ করেন। এ তিনটি সূত্র নিউটনের গতি সূত্র নামে পরিচিত।
এ সূত্রকে অনেক সময় জড়তার সূত্র বলা হয়। কেননা, “জড়তা" মানেই হচ্ছে কোনো পরিবর্তনকে বাধা দেওয়া। আর এ সূত্র থেকে পাওয়া যায় কোনো বস্তু তার যে বেগ আছে (শূন্য বেগসহ) সেই বেগ বজায় রাখতে চায়।
যদি কোনো বস্তু স্থির থাকে বা সমদ্রুতিতে সরল পথে চলে, তাহলে তার ত্বরণ শূন্য হয়। তাই প্রথম সূত্রকে নিম্নোক্তভাবে প্রকাশ করা যেতে পারে "যদি কোনো বস্তুর ওপর বল প্রয়োগ করা না হয়, তাহলে তার ত্বরণ শূন্য হয়।” যেহেতু বল হচ্ছে একটি ভেক্টর রাশি, তাই দুই বা ততোধিক বল সংযুক্ত হয়ে নিট (net) শূন্য বল প্রদান করতে পারে। কোনো বস্তুর ওপর প্রযুক্ত নিট বল হচ্ছে বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলোর ভেক্টর সমষ্টি। কোনো বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলো যদি যথাক্রমে ইত্যাদি হয় তাহলে নিট বল হবে
নিট বল শূন্য হওয়া আর কোনো বল ক্রিয়া না করা একই কথা। নিউটনের প্রথম সূত্রে এ তথ্য ব্যবহার করে আমরা সূত্রটিকে বিবৃত করতে পারি,
“যদি কোনো বস্তুর ওপর নিট বল শূন্য হয়, তাহলে বস্তুটির ত্বরণও শূন্য হবে ।
ধরা যাক, দুটি বস্তু ধাক্কা খেল। ধাক্কার পর বস্তুগুলো কোন দিকে যাবে—এটি কিসের দ্বারা নির্ধারিত হবে? কোনটি বড়, কোনটি ছোট অর্থাৎ তাদের ভর দ্বারা কোনটি বেশি দ্রুত চলছে, কোনটি কম দ্রুত চলছে অর্থাৎ তাদের বেগ দ্বারা ? কোনটি বেশি গুরুত্বপূর্ণ -ভর না বেগ? বস্তুগুলো কোন দিকে যাবে কীভাবে তা নির্ণয় করা হয়। এ সকল প্রশ্নের জবাবের জন্য ভরবেগের ধারণা অত্যন্ত গুরুত্বপূর্ণ। আমরা আমাদের অভিজ্ঞতা থেকে দেখতে পাই, একটি গতিশীল টেবিল টেনিস বলকে থামানোর চেয়ে একটি গতিশীল ট্রাককে থামানো অনেক কঠিন। কোনো গতিশীল বস্তুকে আমরা যদি থামাতে চাই তাহলে আমরা যে প্রতিবন্ধকতার সম্মুখীন হই তার একটি পরিমাপ হচ্ছে ভরবেগ। ভরবেগ হচ্ছে বস্তুর একটি ধর্ম যা বস্তুর ভর এবং বেগের সাথে সম্পর্কিত। বস্তুর ভর যত বেশি হবে এবং বস্তু যত দ্রুত চলবে তার ভরবেগও তত বেশি হবে।
ব্যাখ্যা : কোনো বস্তুর ভর m এবং বেগ হলে তার ভরবেগ
… (4.1)
এই বেগ বলতে আমরা আসলে বুঝি রৈখিক বেগ যা বস্তুর চলন গতির সাথে সংশ্লিষ্ট। এটি কৌণিক বেগ থেকে সম্পূর্ণ ভিন্ন। তাই এই রৈখিক বেগ এর সাথে সংশ্লিষ্ট ভরবেগকে রৈখিক ভরবেগ বলা হয়, যা ঘূর্ণন গতির সাথে সংশ্লিষ্ট কৌণিক ভরবেগ থেকে আলাদা। সুতরাং অন্য কোনোভাবে উল্লেখ না থাকলে পদার্থবিজ্ঞানের পরিভাষায় আমরা ভরবেগ বলতেই বুঝি রৈখিক ভরবেগ ।
যেহেতু বেগ একটি ভেক্টর রাশি, কাজেই ভরবেগও একটি ভেক্টর রাশি। এর দিক বেগের দিকে।
মাত্রা ও একক : ভরবেগের মাত্রা হলো ভর x বেগের মাত্রা অর্থাৎ MLT-1 এবং একক হলো ভরের একক x বেগের একক অর্থাৎ kg ms-1
বেগের সম্পর্ক প্রতিপাদন
ধরা যাক, কোনো বস্তুর ভর m, বেগ এবং ভরবেগ এর ওপর বল প্রযুক্ত হলে এর ভরবেগের পরিবর্তন ঘটে । নিউটনের গতির দ্বিতীয় সূত্রানুসারে, বস্তুর ভরবেগের পরিবর্তনের হার তার ওপর প্রযুক্ত বলের ( ) এর সমানুপাতিক অর্থাৎ,
বা,
বা,
বা,
এখানে K হচ্ছে একটি সমানুপাতিক ধ্রুবক। এর মান রাশিগুলোর এককের ওপর নির্ভর করে। এসআই পদ্ধতিতে বলের একক নিউটনের সংজ্ঞা এমনভাবে দেওয়া হয় যাতে K এর মান l হয়।
যখন m= 1kg এবং a 1 ms-2 তখন
F = 1N ধরলে উপরিউক্ত সমীকরণের K = 1 হয়। সুতরাং নিউটনের সংজ্ঞা হলো, “যে পরিমাণ বল 1 kg ভরের কোনো বস্তুর ওপর ক্রিয়া করে 1 ms-2 ত্বরণ সৃষ্টি করে তাকে 1 N বলে।”
অর্থাৎ 1 N = 1kg ms-2
অতএব, ... (4.2)
বা, বল = ভর ত্বরণ
(4.2) সমীকরণের সাহায্যে আমরা বল পরিমাপ করতে পারি। ভর ও ত্বরণের গুণফল দ্বারা বল পরিমাপ করা হয়।
নিউটনের দ্বিতীয় সূত্র বলের সংজ্ঞা প্রদান করে-যা কোনো বস্তুতে ত্বরণ সৃষ্টি করে তাই হচ্ছে বল। কোনো একটি বস্তুর ওপর যদি কেবলমাত্র একটি বলই ক্রিয়া করে, তাহলে জ্বরণের অভিমুখ হবে বলের অভিমুখে এবং ত্বরণের মান হবে বলের মানের সমানুপাতিক।
কোনো বস্তুর ওপর যদি একাধিক বল প্রযুক্ত হন। তাহলে বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলোর ভেক্টর সমষ্টিকে নিট (net) বল বলে। কোনো বস্তুর ওপর প্রযুক্ত স্বতন্ত্র বলগুলো যদি হয় যথাক্রমে ইত্যাদি, তাহলে নিট বল হবে,
= (4.2)
সুতরাং সে ক্ষেত্রে নিউটনের গতির দ্বিতীয় সূত্র তথা বল ও ত্বরণের সম্পর্কের (4-2 সমীকরণ) রূপ হয়,
=... (4.3)
সুতরাং নিউটনের দ্বিতীয় সূত্রকে এভাবেও বিবৃত করা যায়, “কোনো বস্তুর ত্বরণ বস্তুর ওপর প্রযুক্ত নিট বলের সমানুপাতিক।”
(4.3) সমীকরণে বস্তুর ভর m হচ্ছে বস্তুর ত্বরণ ও প্রযুক্ত নিউরনের মধ্যকার সমানুপাতিক ধ্রুবক। একটি নির্দিষ্ট নিট বলের জন্য বেশি ভরের বস্তুর ত্বরণ কম হয়। সুতরাং বস্তুর ভর হচ্ছে বস্তুর সেই ধর্ম যা বস্তুর বেগের কোনো পরিবর্তনকে বাধা দান করে। যেহেতু জড়তার অর্থ হচ্ছে কোনো পরিবর্তনকে বাধা দেওয়া, কাজেই এই ভরকে অনেক সময় জড়তাত্তর বা জাডা (inertial mass) বলা হয়।
মাত্রা (4.2) সমীকরণ থেকে দেখা যায় যে, বলের মাত্রা হবে MLT-2
চলন গতির ক্ষেত্রে আমরা দেখেছি m ভরের কোনো বস্তু বেগে গতিশীল হলে তার ভরবেগ তথা রৈখিক ভরবেগ = m V, একটি গুরুত্বপূর্ণ রাশি। ঘূর্ণনগতির ক্ষেত্রে ভরবেগের অনুরূপ রাশি হচ্ছে কৌণিক ভরবেগ। কোনো বিন্দুর সাপেক্ষে ভরবেগের ভ্রামকই হচ্ছে কণাটির কৌণিক ভরবেগ ।
চলন গতিতে রৈখিক ত্বরণের সাথে যেমন বল সংশ্লিষ্ট ঘূর্ণন গতিতে তেমনি কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি হলো টর্ক (torque) বা বলের ভ্রামক (moment of force)।
কৌণিক ত্বরণের সাথে সংশ্লিষ্ট রাশি যে বল নয়, তা আমরা আমাদের দৈনন্দিন অভিজ্ঞতা থেকেই দেখতে পাই। কোনো দরজার উপর প্রযুক্ত বল বিভিন্ন কৌণিক ত্বরণ সৃষ্টি করতে পারে—এটি নির্ভর করে বল কোথায় প্রয়োগ করা হয়েছে আর কোন দিকে প্রয়োগ করা হয়েছে তার উপর। দরজার কবজার উপর সরাসরি প্রযুক্ত বল কোনো কৌণিক ত্বরণই সৃষ্টি করে না, আবার সেই একই মানের বল যদি দরজার বাইরের প্রাপ্তে দরজার সাথে লম্বভাবে প্রয়োগ করা হয়, তাহলে সর্বোচ্চ কৌণিক ত্বরণ সৃষ্টি করে থাকে। সুতরাং দরজার এ ঘূর্ণন প্রক্রিয়া নির্ভর করে প্রযুক্ত বলের মান, ঘূর্ণন অক্ষ থেকে বলের প্রয়োগ বিন্দুর দূরত্ব আর কত কোণে বল প্রয়োগ করা হয়েছে তার উপর। এ সকল রাশি মিলিয়ে ঘূর্ণন গতির ক্ষেত্রে আমরা যে রাশির সংজ্ঞা দেই তাই হচ্ছে টর্ক। টর্ক হচ্ছে একটি বলের ঘূর্ণন সৃষ্টি করার সামর্থ্যের একটি পরিমাপ।
ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর এবং ঐ কণার উপর প্রযুক্ত বল হলে ঐ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক হচ্ছে,
= × (4.34)
ঘূর্ণন কেন্দ্র থেকে । দূরত্বে কোনো কণার উপর F বল প্রযুক্ত হলে ঐ কেন্দ্রের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামকের মান π হলো
বা,
এখানে হচ্ছে এবং এর অন্তর্ভুক্ত কোণ।
কিন্তু r sin হচ্ছে ঘূর্ণন কেন্দ্র থেকে বলের ক্রিয়ারেখার লম্ব দূরত্ব (চিত্র : ৪.১৯)। সুতরাং কোনো কণার উপর প্রযুক্ত বল এবং ঘূর্ণন কেন্দ্ৰ থেকে বলের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ কেন্দ্রের সাপেক্ষে টর্ক বা বলের ভ্রামকের মান।
টর্ক একটি ভেক্টর রাশি। এর দিক x এর দিকে। একটি ডানহাতি স্কুকে ও এর সমতলে লম্বভাবে স্থাপন করে থেকে এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।
টর্কের মাত্রা হচ্ছে বল × দূরত্বের মাত্রা অর্থাৎ ML2T-2 এবং একক হচ্ছে Nm।
কোনো দৃঢ় বস্তুর টর্ক 20 N m বলতে বোঝায়, যে পরিমাণ টর্ক 1 kg m2 জড়তার ভ্রামক বিশিষ্ট বস্তুতে 20 rad s-1 কৌণিক ত্বরণ সৃষ্টি করে ।
বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর ক্ষেত্রে টর্ক হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।
ধরা যাক, কোনো একটি দৃঢ় বস্তুর উপর F বল প্রয়োগ করায় বস্তুটি কোনো একটি অক্ষের সাপেক্ষে সমকৌণিক ত্বরণে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m1, ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r1 এবং কণাটির ত্বরণ হলে-
ঘূর্ণন অক্ষের সাপেক্ষে কণাটির উপর প্রযুক্ত টর্ক বা বলের ভ্রামক = Fr1
= m1 a1 r1
= m1 r12
= m1 r12
অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m2 ভরের কণাটির উপর প্রযুক্ত টর্ক = m2r22 । এভাবে প্রতিটি বস্তুকণার উপর প্রযুক্ত টর্ক বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির বলের ভ্রামক বা টর্ক π পাওয়া যাবে।
এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক।
বা,
:- টর্ক = জড়তার ভ্রামক x কৌণিক ত্বরণ
৪.২০ চিত্রে একটি দৃঢ় বস্তুর A ও B বিন্দুতে দুটি সমান, সমান্তরাল ও বিপরীতমুখী বল F, F প্রয়োগ করা হলো।
এ দুটি বল মিলে একটি দ্বন্দ্ব তৈরি হয়। বলদ্বয়ের ক্রিয়া রেখার মধ্যবর্তী লম্ব দূরত্বকে দ্বন্দ্বের বাহু বলে । এখানে d দ্বন্দ্বের বাহু। যেকোনো একটি বল ও বলদ্বয়ের মধ্যবর্তী লম্ব দূরত্বের গুণফলের মানকে দ্বন্দ্বের ভ্রামক (moment of the couple) বলে।
৪.২০ চিত্রানুযায়ী দ্বন্দ্বের ভ্রামক,
C=F × AB=F × d
দ্বন্দ্বের ভ্রামককেও টর্ক বলে। এ জন্য এর একক হবে N m। যে দ্বন্দ্বের জন্য বস্তু ঘড়ির কাঁটার বিপরীত দিকে ঘুরতে চেষ্টা করে সে দ্বন্দ্বের ভ্রামককে ধনাত্মক এবং যে দ্বন্দ্বের জন্য বস্তু ঘড়ির কাঁটার দিকে ঘুরতে চেষ্টা করে সে দ্বন্দ্বের ভ্রামককে ঋণাত্মক ধরা হয়।
ঘূর্ণন গতি সংক্রান্ত নিউটনের গতির প্রথম সূত্র থেকে আমরা জানি, বাহ্যিক টর্ক যদি শূন্য হয়, তাহলে বস্তু সমকৌণিক বেগে ঘুরতে থাকবে। সময়ের সাপেক্ষে কৌণিক বেগ ধ্রুব হলে কৌণিক ভরবেগও ধ্রুব থাকে। অন্যকথায় কোনো বস্তুর উপর প্রযুক্ত টর্ক শূন্য হলে, বস্তুটির কৌণিক ভরবেগ সংরক্ষিত থাকে।
এ কথা বহু কণা সমন্বয়ে গঠিত একটি ব্যবস্থার (System) জন্যও প্রযোজ্য। একে কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণ সূত্র বলে।
কোনো অক্ষের সাপেক্ষে কোনো ব্যবস্থার জড়তার ভ্রামক I, ঐ অক্ষের সাপেক্ষে কৌণিক ভরবেগ L এবং ব্যবস্থার কৌণিক বেগ হলে,
একে সময়ের সাপেক্ষে অন্তরীকরণ করে আমরা পাই,
:-
কিন্তু প্রযুক্ত টর্ক π হলে,
:-
এখন π = 0 হলে
বা, L= ধ্রুবক
সুতরাং প্রযুক্ত টর্ক শূন্য হলে ব্যবস্থার কৌণিক ভরবেগ ধ্রুবক থাকে, অর্থাৎ সংরক্ষিত হয়। এটিই কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণ সূত্র ।
আমরা দেখতে পাই সাঁতারু ডাইভিং মঞ্চ থেকে যখন কোনো পুলে ডাইভ দেন তখন তার শরীরের অঙ্গভঙ্গির পরিবর্তন এমনভাবে হতে থাকে যে, তার জড়তার ভ্রামক ও কৌণিক বেগের পরিবর্তন হয়। কিন্তু যেহেতু বাইরে থেকে কোনো বল তথা টর্ক প্রযুক্ত বলা হয় না, তাই তার কৌণিক ভরবেগ ধ্রুব থাকে অর্থাৎ তার জড়তার ভ্রামক ও কৌণিক বেগের গুণফল সবসময় একই থাকে। ব্যালেরিনা ও জিমন্যাস্টের বেলায়ও ঠিক একই ঘটনা ঘটে (চিত্র ৪.২২)।
কৌণিক ভরবেগের নিত্যতার সূত্র একটি সার্বজনীন সূত্র। এ সূত্র পারমাণবিক ও নিউক্লিয় ক্ষেত্রে যেমন ঘটে, তেমনি নভোমণ্ডলীয় এবং আমাদের ইন্দ্রিয়গ্রাহ্য স্থল জগতের ক্ষেত্রেও প্রযোজ্য। অপরপক্ষে নিউটনীয় বলবিদ্যা পারমাণবিক ও নিউক্লিয় এলাকায় প্রযোজ্য হয় না। কাজেই নিউটনীয় বলবিদ্যার চেয়ে কৌণিক ভরবেগের এ নিত্যতার সূত্র অধিকতর মৌলিক। পারমাণবিক ও নিউক্লিয় পদার্থবিজ্ঞানে আমরা দেখি যে, ক্ষুদ্রাতিক্ষুদ্র কণাসমূহ যেমন ইলেকট্রন, প্রোটন, মেসন ও নিউট্রন ইত্যাদির স্বকীয় স্পিনের সাথে সংশ্লিষ্ট কৌণিক ভরবেগ রয়েছে। আরো রয়েছে তাদের কাক্ষিক গতির (orbital motion) সাথে সংশ্লিষ্ট কৌণিক ভরবেগ। আমরা যখন মোট কৌণিক ভরবেগের নিত্যতার নীতি ব্যবহার করি তখন আমাদের অবশ্যই এ মোট কৌণিক ভরবেগে স্পিন কৌণিক ভরবেগও অন্তর্ভুক্ত করতে হয়। একইভাবে নভোমণ্ডলীয় Pd ক্ষেত্রে সূর্য, নক্ষত্র, গ্রহ, উপগ্রহ ইত্যাদির ক্ষেত্রে কৌণিক ভরবেগে স্পিন কৌণিক ভরবেগ অন্তর্ভুক্ত করতে হয়। কৌণিক ভরবেগের নিত্যতা সৌর জগতের উৎস, অতিকায় নক্ষত্রের সংকোচন ও নভোমণ্ডলীয় বিভিন্ন সমস্যা সংক্রান্ত তথ্যাদি মূল্যায়নে মুখ্য ভূমিকা পালন করে। তাই কৌণিক ভরবেগের নিত্যতা বা সংরক্ষণশীলতা নীতি একটি সার্বজনীন নীতি।
কোনো বস্তুর উপর বাইরে থেকে বল প্রয়োগ না করলে এর বেগের পরিবর্তন হয় না। আমরা জানি, কোনো বস্তুর বেগের দিকের লম্ব বরাবর বল প্রয়োগ করা হলে এর বেগের মানের কোনো পরিবর্তন হয় না, কিন্তু দিকের পরিবর্তন হয়। যেহেতু কোনো বস্তু বৃত্তাকার পথে সমদ্রুতিতে ঘুরার সময় এর বেগের মানের কোনো পরিবর্তন হয় না কিন্তু প্রতিনিয়ত দিক পরিবর্তিত হয়, কাজেই বৃত্তাকার পথে ঘুরার সময় বস্তুর বেগের দিকের সাথে লম্ব বরাবর প্রতিনিয়ত বল প্রযুক্ত হয়। বৃত্তের ব্যাসার্ধ হচ্ছে স্পর্শক তথা বেগের দিকের সাথে লম্ব; তাই বৃত্তাকার পথে ঘুরার সময় বস্তুর উপর ব্যাসার্ধ বরাবর কেন্দ্রের দিকে সব সময়ই একটি বল ক্রিয়া করে। এ বলকে কেন্দ্রমুখী বল বলা হয়।
বৃত্তাকার পথে সমদ্রুতিতে ঘূর্ণায়মান কোনো বস্তুর উপর প্রযুক্ত নিট বলকেই কেন্দ্রমুখী বল নামে অভিহিত করা হয়। এ বল কিন্তু আলাদা কোনো বল নয়। কোনো বস্তু তার ওজন বা কোনো সুতার টান বা কোনো ঘর্ষণ বল বা কোনো অভিলম্ব বল বা একাধিক বলের সমন্বয়ের প্রভাবে বৃত্তাকার পথে ঘুরে। কোনো বস্তুর উপর প্রযুক্ত নিট বল যদি বৃত্তাকার গতি উৎপন্ন করে তখন সেই নিট বল বা লব্ধি বলকেই কেন্দ্রমুখী বল বলা হয় ।
বস্তুকে বৃত্তাকার পথে ঘুরানোর জন্য নানাভাবে বল প্রয়োগ করা যেতে পারে। একটি সুতার এক প্রান্তে একটি ঢিল বেঁধে সুতার অন্য প্রান্ত আঙুলে ধরে যদি সমদ্রুতিতে ঘুরানো যায় তাহলে সুতার মধ্য দিয়ে আঙুলের দিকে ঢিলের উপর একটি বল প্রযুক্ত হবে। সুতার মধ্য দিয়ে বৃত্তাকার পথের কেন্দ্রের দিকে ঢিলটির উপর যে বল প্রযুক্ত হচ্ছে তাই হলো কেন্দ্রমুখী বল।
কেন্দ্রমুখী বল উৎপন্ন হওয়ার জন্য যে ঘূর্ণায়মান বস্তু আর ঘূর্ণন কেন্দ্রের মধ্যে সরাসরি সংযোগ থাকতে হবে এমন কোনো কথা নেই। যখনই কোনো বস্তু কোনো বিন্দুকে কেন্দ্র করে বৃত্তাকার পথে গতিশীল হয় তখনই কেন্দ্রমুখী বল উৎপন্ন হয়। পৃথিবী সূর্যের চারদিকে বা চন্দ্র পৃথিবীর চারদিকে ঘুরার সময় কেন্দ্রমুখী বল লাভ করে। এ কেন্দ্রমুখী বল মহাকর্ষজনিত। এখানে বস্তু ও কেন্দ্রের মধ্যে সরাসরি কোনো সংযোগ নেই। আবার পরমাণুর ইলেকট্রনগুলো যখন নিউক্লিয়াসের চারদিকে ঘুরে তখন ইলেকট্রনগুলোতে কেন্দ্রমুখী বল উৎপন্ন হয়। এ বল তড়িৎ আধানের জন্য হয়ে থাকে। এখানে ইলেকট্রন ও নিউক্লিয়াসের মধ্যকার স্থির তড়িৎ আকর্ষণ বলই কেন্দ্রমুখী বল হিসেবে কাজ করে।
তৃতীয় অধ্যায়ে বৃত্তাকার গতির আলোচনায় আমরা r ব্যাসার্ধের বৃত্তের পরিধি বরাবর v সমদ্রুতিতে গতিশীল বস্তুর বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে কেন্দ্রমুখী ত্বরণ a প্রতিপাদন করেছি । সুতরাং m ভরের কোনো বস্তু r ব্যাসার্ধের বৃত্তাকার পথে v সমদ্রুতিতে ঘুরলে তার উপর ক্রিয়াশীল কেন্দ্রমুখী বল হবে,
কেন্দ্রমুখী বল = ভর x কেন্দ্রমুখী ত্বরণ
বা,
বস্তুটির কৌণিক বেগ ωহলো, v = ωr
:- F = mω2r
(4.38) সমীকরণকে ভেক্টররূপে লিখলে আমরা পাই,
এখানে – চিহ্ন থেকে দেখা যায় কেন্দ্রমুখী বলের দিক ব্যাসার্ধ ভেক্টর তথা অবস্থান ভেক্টরের বিপরীত দিকে অর্থাৎ ব্যাসার্ধ বরাবর কেন্দ্রের দিকে (চিত্র ৩.২৪)। সমীকরণ ( 4.38 ) থেকে দেখা যায় যে,
যেহেতু কেন্দ্রমুখী বল F = mω2r, সুতরাং দেখা যাচ্ছে কেন্দ্রমুখী বল ঘূর্ণায়মান বস্তুর কৌণিক বেগ ω এবং ঘূর্ণন অক্ষ বা কেন্দ্র থেকে দূরত্ব তথা ব্যাসার্ধ r এর উপর নির্ভর করে। কৌণিক বেগ ধ্রুব থাকলে কেন্দ্রমুখী বল ব্যাসার্ধের সমানুপাতিক ।
কেন্দ্রমুখী বলের জন্য বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে বস্তুর যে ত্বরণ হয় তাকে কেন্দ্রমুখী ত্বরণ বলে । সুতরাং কেন্দ্রমুখী ত্বরণ a হলো,
কেন্দ্রবিমুখী বল হচ্ছে কেন্দ্রমুখী বলের সমান ও বিপরীতমুখী। ক্রিয়া ও প্রতিক্রিয়া কোনো সময়ই একই বস্তুর উপর প্রযুক্ত হয় না। তাই কেন্দ্রমুখী বল ও কেন্দ্রবিমুখী বল দুটি ভিন্ন বস্তুর উপর প্রযুক্ত হয়। কেন্দ্রমুখী বল প্রযুক্ত হয় ঘূর্ণায়মান বস্তুর উপর এবং এর দিক হচ্ছে বৃত্তের ব্যাসার্ধ বরাবর কেন্দ্রের দিকে। অপরপক্ষে কেন্দ্ৰবিমুখী বল প্রযুক্ত হয় বৃত্তাকার পথের কেন্দ্রের উপর যা ব্যাসার্ধ বরাবর কেন্দ্রের বাইরের দিকে ক্রিয়া করে।
মান : m ভরের কোনো বস্তু r ব্যাসার্ধের বৃত্তাকার পথে v
সমদ্রুতিতে ঘুরলে বৃত্তাকার পথের কেন্দ্রে অনুভূত কেন্দ্রবিমুখী বল হচ্ছে
সুতায় বাঁধা একটি ঢিলকে যখন বৃত্তাকার পথে ঘুরানো হয় তখন সুতা ঢিলটির উপর যে বল বৃত্তের কেন্দ্রের দিকে প্রয়োগ করে অর্থাৎ সুতার টানই হচ্ছে কেন্দ্রমুখী বল এবং সুতার মাধ্যমে আঙুলের উপর যে বল প্রযুক্ত হয় তা হচ্ছে কেন্দ্রবিমুখী বল (চিত্র ৪-২৩)।
তেমনি সৌরজগতে সূর্যকে কেন্দ্র করে আবর্তনরত গ্রহগুলোর উপর প্রযুক্ত মহাকর্ষ বল হচ্ছে কেন্দ্রমুখী বল, আর সূর্যের উপর প্রযুক্ত মহাকর্ষ বল হচ্ছে কেন্দ্রবিমুখী বল। আবার পরমাণুতে ঘূর্ণনরত ইলেকট্রনগুলোর উপর প্রযুক্ত স্থির তড়িৎ আকর্ষণ বল হচ্ছে কেন্দ্রমুখী বল। আর নিউক্লিয়াসের উপর ইলেকট্রনের দিকে প্রযুক্ত আকর্ষণ বল হচ্ছে কেন্দ্রবিমুখী বল।
১। পানি ভর্তি বালতির উল্লম্বতলে আবর্তন :
পানি ভর্তি একটি বালতিকে উগ্রত্বতলে জোরে ঘুরালে দেখা যাবে যে, বালতিটি যখন সর্বোচ্চ বিন্দুতে উপুড় হয়ে অবস্থান করে তখনও বালতি থেকে পানি পড়ে যায়। না। এর কারণ ঘূর্ণন গতির ফলে পানির উপর যে কেন্দ্রবিমুখ বল ক্রিয়া করে সর্বোচ্চ বিন্দুতে বালতি যখন উপুড় হয়ে যায় তখন সেটি ঊর্ধ্বমুখে ক্রিয়া করে পানির ওজনকে নাকচ করে, ফলে পানি পড়ে যায় না। (চিত্র নং ৪. ২৪ )
কোনো সাইকেল আরোহী বা কোনো দৌড়বিদকে যখন বাঁক নিতে হয় তখন সাইকেলসহ আরোহীকে বা দৌড়বিদকে বাঁকের ভেতরের দিকে অর্থাৎ বৃত্তাকার পথের কেন্দ্রের দিকে কাত হয়ে বাঁক নিতে হয়। সোজাভাবে বাঁক নিতে গেলে উল্টে পড়ে যাওয়ার সম্ভাবনা থাকে। বৃত্তাকার পথে সাইকেল চালানোর জন্য বৃত্তাকার পথের কেন্দ্রের দিকে অনুভূমিক বরাবর একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। আরোহীসহ সাইকেলের ভর যদি m হয়, আর যদি
আরোহী r ব্যাসার্ধের বৃত্তাকার পথে v সমদ্রুতিতে সাইকেল চালান তাহলে তার যে কেন্দ্রমুখী বলের প্রয়োজন হবে তার মান হলো F= । একজন আরোহী যখন সাইকেল চালান তখন তার উপর দুটি বল ক্রিয়া করে :
(১) আরোহীসহ সাইকেলের ওজন W=mg (চিত্র: ৪.২৫ ক), খাড়া নিচের দিকে এবং (২) ভূমির প্রতিক্রিয়া R, (চিত্র : ৪.২৫ খ) সাইকেল যে দিকে ভূমিতে বল প্রয়োগ করে তার বিপরীত দিকে ।
উপরিউক্ত দুটি বলের লব্ধি থেকেই তাকে প্রয়োজনীয় কেন্দ্রমুখী বল জোগাড় করতে হয়। ভূমির প্রতিক্রিয়া R এবং ওজন W একই সরলরেখায় পরস্পর বিপরীত দিকে ক্রিয়া করলে অনুভূমিক বরাবর লব্ধি তথা কেন্দ্রমুখী বল পাওয়া সম্ভব নয়। সুতরাং কেন্দ্রমুখী বল পাওয়ার জন্য ওজন W এবং প্রতিক্রিয়া R পরস্পরের সাথে হেলে অর্থাৎ কোণ করে ক্রিয়া করতে হবে (চিত্র : ৪.২৫)। যেহেতু ওজন W সব সময়ই খাড়া নিচের দিকে ক্রিয়া করবে, তাই ভূমির প্রতিক্রিয়া R কে অবশ্যই উল্লম্ব বরাবর ক্রিয়া না করে উল্লম্বের সাথে কোণ করে অর্থাৎ হেলে ক্রিয়া করতে হবে। আর সাইকেলের ঢাকা ভূমিকে যে বরাবর বল দেবে; যেহেতু প্রতিক্রিয়া তার বিপরীত দিকেই হবে, সুতরাং আরোহীসহ সাইকেলকে উল্লম্বের সাথে কোণ করে অর্থাৎ হেলে পড়ে বাঁক নিতে হবে। তাই বৃত্তাকার পথে বাঁক নিতে গেলেই কেন্দ্রমুখী বলের উদ্ভব হয় আর সেই বল সরবরাহ করার জন্যই আরোহীসমেত সাইকেলকে ভূমির দিকে হেলে পড়তে হয় ।
যদি আরোহী উল্লম্বের সাথে কোণে বেঁকে যান তাহলে প্রতিক্রিয়া বল R এর উল্লম্ব এবং অনুভূমিক উপাংশ হবে যথাক্রমে R cos এবং R sin । প্রতিক্রিয়ার এ উল্লম্ব উপাংশ আরোহীসমেত সাইকেলের ওজন mg-কে প্রশমিত করে আর অনুভূমিক উপাংশই সরবরাহ করে প্রয়োজনীয় কেন্দ্ৰমুখী বল
:- R cos θ= mg
এবং R sin θ =
বা, tan θ = (4.40)
সুতরাং সাইকেল আরোহীকে v সমদ্রুতিতে r ব্যাসার্ধের বৃত্তাকার পথে বাঁক নিতে গেলে তাকে উল্লম্বের সাথে যে কোণে বাঁকতে হবে তা ওপরের সমীকরণ থেকে বের করা যায়। এ সমীকরণ থেকে দেখা যায় যে, v-এর মান বড় এবং r -এর মান ছোট হলে tan θ তথা θ-এর মান বড় হয়। সুতরাং আরোহীর বেগ যতো বেশি হবে এবং বাঁকের ব্যাসার্ধ যতো কম হবে। তাকে ততো বেশি হেলতে হবে।
কোনো মোটর বা রেলগাড়ি যখন বাঁক নেয় তখন এ বাঁকাপথে ঘুরার জন্য একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। এ কেন্দ্রমুখী বল না পাওয়া গেলে গাড়ি জড়তার কারণে বাঁকাপথের স্পর্শক বরাবর চলে যাবে। অনেক সময় গাড়ি উল্টে যায়। সমতল পথে বাঁক নেওয়ার সময় গাড়ির চাকা ও রাস্তার মধ্যবর্তী ঘর্ষণ বল এ কেন্দ্রমুখী বল সরবরাহ করে। কিন্তু ঘর্ষণ বলের মান তথা কেন্দ্রমুখী বলের মান খুব কম হওয়ায় গাড়ি বেশি জোরে বাঁক নিতে পারে না। বেশি জোরে বাঁক নিতে গেলে কেন্দ্রমুখী বল তথা ঘৰ্ষণ বলের মান বাড়াতে হবে। আর সে জন্য বাঁকের মুখে রাস্তার তলকে অনুভূমিক তলের সাথে হেলিয়ে রাখতে হয় যাতে রাস্তার বাইরের দিক ভেতরের দিকের চেয়ে কিছু উঁচুতে থাকে। একে ঢাল বা ব্যাংকিং বলে। অনুভূমিক রেখার সাথে ঐ জায়গায় দুই পাশ যে কোণ উৎপন্ন করে তাকে ব্যাংকিং কোণ বলে।
ধরা যাক, আরোহীসমেত গাড়ির ওজন W। ৪.২৬ চিত্র থেকে দেখা যাচ্ছে যে, গাড়ির ওজন W সরাসরি নিচের দিকে কাজ করছে এবং রাস্তার অভিলম্বিক প্রতিক্রিয়া বল Fn রাস্তার সাথে সমকোণে গাড়ির উপর প্রযুক্ত হচ্ছে। এ দুই বলের লব্ধি F অনুভূমিকভাবে বৃত্তাকার পথের কেন্দ্রের দিকে ক্রিয়া করছে। এ লব্ধি বলই গাড়িটিকে বৃত্তাকার পথে ঘুরানোর জন্য প্রয়োজনীয় কেন্দ্রমুখী বল সরবরাহ করছে। এখন চিত্র থেকে এখানে θ হচ্ছে ব্যাংকিং কোণ ।
:-
:-
(4.41) নং সমীকরণ থেকে দেখা যাচ্ছে যে, রাস্তার ব্যাংকিং গাড়ির দ্রুতি ও বাঁকের ব্যাসার্ধের উপর নির্ভর করে গাড়ির ভরের উপর নির্ভর করে না।
ধরা যাক, ব্যাংকিং কোণ =
রাস্তার প্রস্থ, OB = d
এবং রাস্তার ভিতরের প্রান্ত থেকে বাইরের প্রান্তের উচ্চতা,
AB = h (চিত্র: ৪.২৭ ) ।
:-
বা,
ব্যাখ্যা খুব সীমিত সময়ের জন্য খুব বড় মানের ঘাত বল প্রযুক্ত হয়। অনেক সময় এ ঘাত বলের মান এত বড় হয় যে এর ক্রিয়াকাল খুব কম হলেও এর প্রভাব দৃষ্টিগ্রাহ্য হয়। যে স্বল্প সময়ব্যাপী ঘাত বল প্রযুক্ত হয় সেই সময় অন্যান্য বলের প্রভাব উপেক্ষা করা হয়।
উদাহরণ : ধরা যাক, একটি র্যাকেট কোনো টেনিস বলকে আঘাত করল। র্যাকেট কর্তৃক প্রযুক্ত বল F টেনিস বলটির ভরবেগ পরিবর্তন করে। যে সময় ধরে টেনিস বলটি র্যাকেটটির সংস্পর্শে থাকে সে সময়ে র্যাকেট কর্তৃক প্রযুক্ত বল টেনিস বলটির উপর ক্রিয়াশীল অন্যান্য বলের তুলনায় অনেক বড় হয়। র্যাকেট কর্তৃক প্রযুক্ত এরূপ বল ঘাত বল।
সংজ্ঞা কোনো বল ও বলের ক্রিয়াকালের গুণফলকে ঐ বলের ঘাত বলে।
ব্যাখ্যা : কোনো বল যদি কোনো বস্তুর উপর সময় ধরে ক্রিয়া করে, তাহলে বলের ঘাত হবে,
সুতরাং বলের ঘাত হলো বস্তুর ভরবেগের পরিবর্তন সমান।
:- =
আমাদের দৈনন্দিন জীবনে ঘাতবল ও বলের ঘাতের প্রভাব অপরিসীম। বস্তুকে ধীরগতি করতে হলে অর্থাৎ এর বেগ কমাতে হলে বলের ঘাতের প্রয়োগ হয়। এক্ষেত্রে বলের ঘাত গতির বিপরীত দিকে ক্রিয়া করে। ক্রিকেট খেলায় যখন একজন ফিল্ডার ক্যাচ ধরতে চান তখন গতিশীল বলকে থামিয়ে অর্থাৎ বলটির ভরবেগ শূন্যে নামিয়ে এনে ক্যাচ ধরতে হয়। এতে বলের ঘাতের প্রয়োজন হয় এবং এজন্য একটি বিপরীতমুখী বলকে কিছুক্ষণের জন্য ক্রিয়া করতে হয়। এখন ফিল্ডার যদি তার ঘাত স্থির রাখেন তাহলে ক্রিকেট বলটি তখনই থেমে যাবে। এতে যে সময় ধরে ফিল্ডারের হাতের উপর বল ক্রিয়া করে সেই সময় খুব ক্ষুদ্র হয়। ফলে বলের মান হতে হয় খুবই বৃহৎ যে বল ফিল্ডারের হাতে তীব্র ব্যথা উৎপন্ন করে। এখন বল ধরার মুহূর্তে ফিল্ডার যদি হাতটকে পেছনের দিকে টেনে নেন, তাহলে বলের ক্রিয়াকাল বৃদ্ধি পায়। ফলে থামানোর জন্য প্রয়োজনীয় ঘাতের যোগানদার বলও কম হয় এবং ক্যাচটি ধরাও অনেক কম পীড়াদায়ক হয়।
একই কারণে আমরা দেখতে পাই একজন মুষ্ঠিযোদ্ধা প্রতিপক্ষের ঘুষির প্রভাব কমানোর জন্য তার মাথাকে পিছনের দিক সরিয়ে নেন। ক্রিকেট খেলায় ব্যাটসম্যানরা ও উইকেটকিপারও একই কারণে প্যাড ও গ্লাভস পরে মাঠ নামেন। প্যাড ও গ্লাভসে দ্রুতগতির ক্রিকেটবল আঘাত করলে প্যাড ও গ্লাভস কিছুটা থেতলে গিয়ে সংঘর্ষের সময়কাল বাড়িয়ে দেয় ফলে ঘাত বল হ্রাস পায় এবং বলের আঘাত কম পীড়াদায়ক হয়।
যেমন হাতুড়ি দিয়ে পেরেককে আঘাত করা বা ক্রিকেট খেলায় ব্যাট দিয়ে বলকে আঘাত করা। এখানে হাতুড়ি বা ব্যাট খুব অল্প সময়ের জন্য পেরেক বা বলের সংস্পর্শ থাকে কিন্তু খুব বড় মানের বলে আঘাত করে। সংঘর্ষে ঘাত বল ক্রিয়া করে। সংঘর্ষের মূল ধারণাটি হলো : সংঘর্ষে বস্তুগুলোর অথবা অন্তত একটি বস্তুর গতি হঠাৎ এমনভাবে পরিবর্তিত হবে যে আমরা “সংঘর্ষের পূর্ব" এবং "সংঘর্ষের পর "কে সুস্পষ্টভাবে আলাদা করতে পারি। সংঘর্ষে ভরবেগের নিত্যতা সূত্র খাটে অর্থাৎ সংঘর্ষের পূর্বের মোট ভরবেগ এবং সংঘর্ষের পরের মোট ভরবেগ একই থাকে। কিন্তু গতিশক্তি সংরক্ষিত থাকে কিনা তার উপর নির্ভর করে সংঘর্ষকে দুভাগে ভাগ করা হয়। স্থিতিস্থাপক সংঘর্ষ এবং অস্থিতিস্থাপক সংঘর্ষ। স্থিতিস্থাপক সংঘর্ষে ভরবেগের সাথে সাথে গতিশক্তিও সংরক্ষিত থাকে, অস্থিতিস্থাপক সংঘর্ষে ভরবেগ সংরক্ষিত হয়, কিন্তু গতিশক্তি সংরক্ষিত থাকে না।
দুটি বস্তুর মধ্যে সংঘর্ষ হলে যদি মোট গতি শক্তি সংরক্ষিত থাকে অর্থাৎ যদি বস্তুগুলোর মোট গতি শক্তির পরিবর্তন না হয় তাহলে তাকে স্থিতিস্থাপক সংঘর্ষ বলে। ধরা যাক, m1, ও m2 ভরের দুটি বস্তু একই সরলরেখা বরাবর চলছে। m2 এর বেগ m1 এর বেগের চেয়ে বেশি হলে চলতে চলতে কোনো এক সময় m2 ভরের বস্তুটি m1 ভরের বস্তুটিকে ধাক্কা দিবে অর্থাৎ বস্তুদ্বয় সংঘর্ষে লিপ্ত হবে।
m1 ও m2 ভরের দুটি বস্তুর সংঘর্ষের আগে বেগ যথাক্রমে vli ও v2i এবং সংঘর্ষের পরে যথাক্রমে বেগ vlf ও v2f হলে (চিত্র : ৪.২৮), ভরবেগের সংরক্ষণ সূত্র থেকে লেখা যায়,
(4.44) ও (4.45) সমীকরণকে যথাক্রমে লেখা যায়,
mi1(vlf - VIf) = m2 (v2f - v2i)….. (4.46)
এবং m1 (v2If - v2If) = m2 (v22f-v22i)… (4.47)
.(4.47) সমীকরণকে (4.46) সমীকরণ দিয়ে ভাগ করে আমরা পাই,
Vli + Vlf= V2f+ V2i
বা, Vli - V2i = V2f - VIf
(4.48) সমীকরণ থেকে দেখা যায় যে, সংঘর্ষের আগে বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে কাছাকাছি আসে এবং সংঘর্ষের পর বস্তু দুটি যে আপেক্ষিক বেগ নিয়ে দূরে সরে যায় তার মান সমান।
(4.48) সমীকরণকে লেখা যায়,
V2f = Vli + VIf - V2i
(4.49) সমীকরণকে (4.46) সমীকরণে বসিয়ে আমরা পাই,
১. V1 ও V2 সমান হলে বস্তু দুটির মধ্যে কোনো সংঘর্ষ হবে না।
২. বস্তু দুটির ভর সমান হলে অর্থাৎ m1 = m2 হলে (4.50) ও (4.52) সমীকরণ থেকে পাওয়া যায়,
VIf=V2i এবং V2f = Vli... ... (4.53)
সুতরাং সমান ভরের দুটি বস্তুর মধ্যে সংঘর্ষ হলে একটি বস্তু অপরটির বেগ প্রাপ্ত হয় অর্থাৎ বস্তুদ্বয় বেগ বিনিময় করে।
৩. যদি সংঘর্ষের পূর্বে m1 ভরের বস্তু স্থির থাকে তাহলে (4.50 ) ও (4.52 ) সমীকরণ অনুসারে,
এবং
এখন যদি m1 = m2 হয় তাহলে VIf= V2i এবং v2f = 0... .. (4.55)
অর্থাৎ দুটি সমান ভরের বস্তুর একটি যদি স্থির থাকে তাহলে সংঘর্ষের ফলে গতিশীল বস্তুটি থেমে যাবে এবং থেমে থাকা বস্তুটি গতিশীল বস্তু যে বেগে আসছিল সেই বেগ নিয়ে চলতে থাকবে।
কোনো মসৃণ তলে থেমে থাকা একটি মার্বেলকে যদি পেছন থেকে অন্য মার্বেল দিয়ে অনুভূমিকভাবে আঘাত করা যায়। তাহলে থেমে থাকা মার্বেলটি আগত মার্বেলের বেগ নিয়ে চলতে থাকে এবং আগত মার্বেলটি থেমে যায়।
৪. যদি স্থির বস্তুর ভর গতিশীল বস্তুর তুলনায় অনেকগুণ বেশি হয় অর্থাৎ m1 >> m2 হয়, তাহলে (4.54) সমীকরণ থেকে আমরা পাই,