চলন গতির ক্ষেত্রে আমরা দেখেছি m ভরের কোনো বস্তু বেগে গতিশীল হলে তার ভরবেগ তথা রৈখিক ভরবেগ একটি গুরুত্বপূর্ণ রাশি। ঘূর্ণনগতির ক্ষেত্রে ভরবেগের অনুরূপ রাশি হচ্ছে কৌণিক ভরবেগ। কোনো বিন্দুর m সাপেক্ষে ভরবেগের ভ্রামকই হচ্ছে কণাটির কৌণিক ভরবেগ।
ব্যাখ্যা : ঘূর্ণন কেন্দ্রের সাপেক্ষে কোনো কণার ব্যাসার্ধ ভেক্টর বা অবস্থান ভেক্টর এবং ঐ কণার ভরবেগ হলে, বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগ হচ্ছে,
... (4.32)
ঘূর্ণন কেন্দ্র থেকে দূরত্বে কোনো কণার ভরবেগ p হলে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান L হবে-
L = rp sin
বা, L = pr sin
এখানে হচ্ছে এবং ' এর অন্তর্ভুক্ত কোণ। কিন্তু r sin হচ্ছে ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়া রেখার লম্ব দূরত্ব (চিত্র : ৪-১৮)। সুতরাং কোনো কণার ভরবেগ এবং ঘূর্ণন কেন্দ্র থেকে ভরবেগের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলই হচ্ছে ঐ বিন্দুর সাপেক্ষে কণাটির কৌণিক ভরবেগের মান ।
দিক : কৌণিক ভরবেগ একটি ভেক্টর রাশি। এর দিক ×এর দিকে।
একটি ডানহাতি স্কুকে এবং 'এর সমতলে লম্বভাবে স্থাপন করে থেকে ' এর দিকে ক্ষুদ্রতর কোণে ঘুরালে যে দিকে অগ্রসর হয় সেদিকে।
মাত্রা ও একক : কৌণিক ভরবেগের মাত্রা হচ্ছে ভরবেগ × দূরত্বের মাত্রা অর্থাৎ ML2T-1 এবং এর একক হচ্ছে kg m2s-1
তাৎপর্য : কোনো বস্তুর কৌণিক ভরবেগ 30 kg ms-1 বলতে বোঝায় ঐ বস্তুর কৌণিক ভরবেগ 1 kgm2
জড়তার ভ্রামকবিশিষ্ট কোনো বস্তুর কৌণিক বেগ 30 rad s-1 হলে যে কৌণিক ভরবেগ হবে তার সমান।
বি: দ্র: কোনো অক্ষের সাপেক্ষে ঘূর্ণায়মান দৃঢ় বস্তুর কৌণিক ভরবেগ হয় ঐ ঘূর্ণন অক্ষের সাপেক্ষে।
ধরা যাক, একটি বস্তু কোনো একটি অক্ষের সাপেক্ষে সমকৌণিক দ্রুতিতে ঘূর্ণায়মান। উক্ত বস্তুর যেকোনো একটি কণার ভর m1 ঘূর্ণন অক্ষ থেকে কণাটির লম্ব দূরত্ব r1 এবং কণাটির বেগ v1 হলে
ঘূর্ণন অক্ষের সাপেক্ষে কণাটির কৌণিক ভরবেগ, P1r1 = m1v1r1
=m1 r21 [ :- v₁ = r₁ ]
= m1r21
অনুরূপে ঘূর্ণন অক্ষের সাপেক্ষে m2 ভরের কৌণিক ভরবেগ = m2r21। এভাবে প্রতিটি বস্তুকণার জন্য কৌণিক = ভরবেগ বের করে তাদের সমষ্টি নিলে সম্পূর্ণ বস্তুটির কৌণিক ভরবেগ L পাওয়া যাবে।
L= ωm₁r₁² + ωm₂r₂² + ωm3r3²+...…
= ω ( m₁r₁² + m₂r₂² + m3r3² +…..)
=….. (4.33)
বা,
:- এখানে I হলো ঘূর্ণন অক্ষের সাপেক্ষে বস্তুটির জড়তার ভ্রামক . কৌণিক ভরবেগ = জড়তার ভ্রামক x কৌণিক বেগ।