গ্রহ-নক্ষত্রের প্রকৃতি, স্বরুপ, গতিবিধি ইত্যাদি সম্পর্কে প্রাচীনকাল থেকেই বিজ্ঞানীদের অপরিসীম কৌতূহল ছিল। বিখ্যাত জ্যোতির্বিদ টাইকো ব্র (Tycho Brahe), জোহান্স কেপলার (Johannes Kepler) গ্রহ, নক্ষত্রের গতিবিধি সম্পর্কে উল্লেখযোগ্য অবদান রাখেন। কেপলার প্রথম উপলব্ধি করেন যে গ্রহগুলো কোন এক বলের প্রভাবে সূর্যকে কেন্দ্র করে অবিরত ঘুরছে। কিন্তু কি ধরনের বল ক্রিয়াশীল তা সঠিকভাবে বোঝাতে সমর্থ হননি। 1681 খ্রিস্টাব্দে মহাবিজ্ঞানী স্যার আইজাক নিউটন (Sir Isaac Newton) প্রথম “মহাকর্ষ সূত্র' আবিষ্কার করে এ সমস্যার সমাধান করেন। কথিত আছে, নিউটন তাঁর গৃহ-সংলগ্ন বাগানে একটি আপেল গাছের নিচে বসে বই পড়ছিলেন। এমন সময় একটি আপেল তাঁর নিকটে মাটিতে পড়ে। তিনি ভাবলেন গাছের উপরে ফাঁকা, নিচে ফাঁকা, ডানে ফাঁকা এবং বামেও ফাঁকা। আপেল ফল মাটিতে পড়ল কেন ? এই 'কেন' এর উদ্ঘাটন করতে গিয়ে তিনি মহাকর্ষ (Gravitation) এবং অভিকর্ষ (Gravity) আবিষ্কার করেন এবং সূর্যের চারদিকে গ্রহ-উপগ্রহের আবর্তনের কারণ ব্যাখ্যা করেন। এ অধ্যায়ে আমরা মহাকর্ষ, অভিকর্ষ, নিউটনের মহাকর্ষ সূত্র, অভিকর্ষজ ত্বরণ, মুক্তি বেগ, কেপলারের সূত্র, গ্রহের গতি ইত্যাদি আলোচনা করব।
বিখ্যাত বিজ্ঞানী স্যার আইজাক নিউটন আবিষ্কার করেন যে এ মহাবিশ্বের যে কোন দুটি বস্তু বা বস্তু কণার মধ্যে একটি পারস্পরিক আকর্ষণ রয়েছে। দুটি বস্তু বা বস্তুকণার মধ্যকার এই পারস্পরিক আকর্ষণ বলকে কখনও মহাকর্ষ আবার কখনও অভিকর্ষ বলা হয়।
এ দুটি বলের মধ্যে পার্থক্য রয়েছে। তাহলে প্রশ্ন জাগে মহাকর্ষ ও অভিকর্ষ কি ? এদের সংজ্ঞা নিম্নে দেয়া হল :
সূর্য এবং চন্দ্রের মধ্যকার পারস্পরিক আকর্ষণ বলের নাম মহাকর্ষ, অপর পক্ষে পৃথিবী ও চন্দ্রের মধ্যকার পারস্পরিক আকর্ষণ বলই অভিকর্ষ। আরও সোজা ভাষায় বলা যায় পৃথিবী এবং আম গাছের একটি আমের মধ্যকার যে আকর্ষণ বল তা অভিকর্ষ। কিন্তু একই আম গাছের দুটি আমের মধ্যকার পারস্পরিক আকর্ষণ বলের নাম মহাকর্ষ।
ভর M = 6 x 1024 kg, ব্যাসার্ধ R = 6.4 × 106m
খোলা মাঠে রফিক একটি বস্তুকে বিশেষ যান্ত্রিক ব্যবস্থায় উপরে নিক্ষেপ করার চেষ্টা করছে। বন্ধু রহিম তাকে সতর্ক করে বলে বেশি জোরে নিক্ষেপ করলে বস্তুটি আর পৃথিবীতে ফিরে আসবে না। পৃথিবীর ব্যাসার্ধ = 6.4 × 106m এবং g = 9.78 m s-2.
একটি গ্রহের ব্যাস 6000 km এবং এর পৃষ্ঠের অভিকর্ষীয় ত্বরণ 3.8 m s-2
আমরা সর্বদা দেখি যে, কোনো বস্তুকে উপর থেকে নিচে ছেড়ে দিলে তা সরাসরি নিচে পৌঁছায়। আমরা কি কখনও ভেবে দেখেছি? একই সাথে ভারী এবং হালকা বস্তুকে একই স্থান থেকে নিচে ছেড়ে দিলে। তারা কি একই সাথে একই সময়ে ভূপৃষ্ঠে পৌঁছায়? আমরা দেখি যে, ভারী বস্তু ও হালকা বস্তু একই উচ্চতা থেকে পড়তে দিলে ভারী বস্তু আগে পৌছায়।
যেহেতু বস্তুর উপর ক্রিয়াশীল অভিকর্ষজ তরণ বস্তুর ভরের উপর নির্ভর করে না, তাই ভর ও বস্তুর উপর ক্রিয়াশীল অভিকর্ষজ ত্বরণ একই। সুতরাং এদের একই সময়ে মাটিতে পৌঁছানোর কথা বস্তুর পতনের সময়ের যে পার্থক্য পাওয়া যায় তা বায়ুর বাধার জন্য।
গ্যালিলিও উঁচু মান মন্দিরের ছাদ থেকে একই রকমের ভারী বস্তু ফেলে দেখান যে, এরা প্রায় একই সময়ে মাটিতে পৌছায়। বাতাসের বাধা না থাকলে তারা একত্রেই মাটিতে পৌছাত। বাতাসের মধ্যে বস্তুদ্বয় থাকার জন্য এদের ওজনের বিপরীত দিকে বাতাসের বাধাগ্রস্ত করে। ভারী বস্তুর চেয়ে হালকা কাগজের ওপর প্রবতা বা ঊর্ধ্বমুখী বল বেশি হওয়ায় কাগজ দেরিতে মাটিতে পৌছায়।
যেহেতু বস্তুর ওপর ক্রিয়াশীল অভিকর্ষজ ত্বরণ বস্তুর ভরের ওপর নির্ভর করে না, তাই ভারী বস্তু ও কাগজের ওপর ক্রিয়াশীল অভিকর্ষজ ত্বরণ একই।
পড়ন্ত বস্তু সম্পর্কে গ্যালিলিও তিনটি সূত্র দিয়েছেন। এগুলোকে পড়ন্ত বস্তুর ক্ষেত্রে গ্যালিলিওর সূত্র বলে।
যা স্থির অবস্থা থেকে বিনা বাধায় পড়ন্ত বস্তুর ক্ষেত্রে প্রযোজ্য।
বায়ুশূন্য স্থানে বা বাধাহীন পথে সকল বস্তুই নিশ্চল অবস্থা হতে যাত্রা করে সমান দ্রুততায় নিচে নামে অর্থাৎ সমান সময়ে সমান দূরত্ব অতিক্রম করে।
ব্যাখ্যা : ছোট, বড় ও বিভিন্ন ওজনের কতকগুলো বস্তু একই উচ্চতা হতে ও স্লিাকথা হতে ছেড়ে দিলে রাধাহীন পথে তারা সমান দ্রুততায় অর্থাৎ ত্বরণে গতিশীল থাকবে এবং একই সময়ে মাটিতে পড়বে।
বাধাহীন পথে পড়ন্ত বস্তুর নির্দিষ্ট সময়ে প্রাপ্ত বেগ ঐ সময়ের সমানুপাতিক। কোনো পড়ন্ত বস্তু সময়ে বেগ প্রাপ্ত হলে, গাণিতিকভাবে লেখা যায়, v t ।
ব্যাখ্যা : অভিকর্ষের টানে স্থিরাবস্থা হতে বাধাহীন পথে নিচের দিকে পড়বার সময় কোনো বস্তুর বেগ যদি এক সেকেন্ড পরে v হয় তবে তার বেগ দুই সেকেন্ড পরে V × 2, তিন সেকেন্ড পরে V× 3 ইত্যাদি হবে। সাধারণভাবে বলা যায় যে, কোনো একটি পড়ন্ত বস্তুর বেগ t1 ও t2 সময়ে যথাক্রমে v1 ও v2
বাধাহীন পথে পড়ন্ত বস্তুর নির্দিষ্ট সময়ে অতিক্রান্ত দূরত্ব ঐ সময়ের বর্গের সমানুপাতিক।
কোনো পড়ন্ত বস্তু t সময়ে h দুরত্ব অতিক্রম করলে গাণিতিক নিয়মে লেখা যায়-
ব্যাখ্যা : অভিকর্ষের টানে স্থিতাবস্থা হতে বাধাহীন পথে নিচের দিকে পড়বার সময় কোনো বস্তু যদি প্রথম সেকেন্ডে h দূরত্ব অতিক্রম করে তবে বস্তুটি দুই সেকেন্ডে 22 × h, তিন সেকেন্ডে 32 × h ইত্যাদি দূরত্ব অতিক্রম করবে।
1687 খ্রিস্টাব্দে বিখ্যাত বিজ্ঞানী স্যার আইজ্যাক নিউটন আপেল পতন এবং গ্রহ-উপগ্রহের গতি পর্যবেক্ষণ করে মহাকর্ষের যে সূত্র আবিষ্কার করেন তা নিম্নোক্তভাবে সংজ্ঞায়িত করা যায় :
নিউটনের মহাকর্ষ সূত্র বিশ্লেষণ করলে দেখা যাবে এই সূত্রে তিনটি অংশ রয়েছে। দুটি অংশ বলের পরিমাণ নির্দেশ করে আর একটি অংশ বলের প্রকৃতি সম্বন্ধীয়।
বলের পরিমাপ : মনে করি দুটি বস্তুকণার ভর যথাক্রমে m1 ও m2 এবং তাদের মধ্যবর্তী দূরত্ব d [চিত্র ৭.১]। যদি তাদের মধ্যে আকর্ষণ বল F হয়, তবে মহাকর্ষ সূত্র অনুসারে
(i)
(ii)
(i) ও (ii)-কে যুক্ত করে পাই,
এখানে, G একটি সমানুপাতিক ধ্রুবক। এই ধ্রুবককে মহাকর্ষীয় ধ্রুবক (Gravitational constant) বা বিশ্বজনীন মহাকর্ষীয় ধ্রুবক (Universal gravitational constant) বলা হয়। G-কে বিশ্বজনীন ধ্রুবক বলা হয় কারণ G-এর মান বস্তুকণা দুটির মধ্যবর্তী মাধ্যমের প্রকৃতির ওপর যেমন—প্রবেশ্যতা (permeability), প্রবণতা (susceptibility), দিকদর্শিতা (directivity) এবং বস্তুকণা দুটির ভৌত অবস্থার উপর নির্ভর করে না।
মহাকর্ষ বল দুটি বস্তুর মধ্যকার পারস্পরিক আকর্ষণ বল। দুটি চার্জিত বস্তু কিংবা দুটি চুম্বক পরস্পরকে আকর্ষণ করে যখন চার্জ দুটি বিপরীতধর্মী অর্থাৎ একটি ধনাত্মক ও অপরটি ঋণাত্মক হয় এবং বিকর্ষণ করে যখন চার্জ দুটি সমধর্মী হয়। চুম্বকের ক্ষেত্রে আকর্ষণ হয় যখন চুম্বকদ্বয়ের বিপরীত মেরু কাছাকাছি আসে এবং বিকর্ষণ করে যখন মেরুদ্বয় সমধর্মী হয়। কিন্তু মহাকর্ষ শুধুমাত্র আকর্ষণ বল। মহাকর্ষ বল বস্তু দুটির সংযোগ সরলরেখা বরাধর ক্রিয়া করে। এছাড়া মহাকর্ষ বল মাধ্যমের উপর নির্ভর করে না। মাধ্যম যাই হোক না এই বলের কোন পরিবর্তন হয় না।
মহাকর্ষ সূত্রকে ভেক্টর রাশির দ্বারা নিম্নলিখিতভাবে লেখা যায় :
এখানে F21 হচ্ছে দ্বিতীয় বস্তুর উপর প্রথম বস্তুর সদিক বল (আকর্ষণ) হচ্ছে প্রথম বস্তু হতে দ্বিতীয় বস্তুর সদিক দূরত্ব।
যেহেতু প্রথম বস্তু আকর্ষণ করে দ্বিতীয় বস্তুকে নিজের দিকে টানছে অর্থাৎ এবং দিক এর বিপরীত, সুতরাং উপরোক্ত সমীকরণে ঋণাত্মক চিহ্ন ব্যবহৃত হয়েছে। কিন্তু মহাকর্ষ বলের মান সূচক। সুতরাং ঋণাত্মক চিহ্ন ব্যবহৃত হয়নি।
সমীকরণ (1) হতে পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mo>=</mo><mfrac><mrow><mi>F</mi><mo>×</mo><msup><mi>d</mi><mn>2</mn></msup></mrow><mrow><msub><mi>m</mi><mn>1</mn></msub><msub><mi>m</mi><mn>2</mn></msub></mrow></mfrac></math>
মনে করি দুটি বস্তুকণার প্রত্যেকটির ভর এক একক এবং তাদের মধ্যবর্তী দূরত্বও এক একক অর্থাৎ
m1 = 1 একক, m2 = 1 একক এবং d = 1 একক।
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mo>=</mo><mfrac><mrow><mi>F</mi><mo>×</mo><msup><mn>1</mn><mn>2</mn></msup></mrow><mrow><mn>1</mn><mo>×</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mi>F</mi></math>
সুতরাং, মহাকর্ষীয় ধ্রুবকের সংজ্ঞা হিসেবে বলা যায়— “একক ভরবিশিষ্ট দুটি বস্তুকণা একক দূরত্বে থেকে যে পরিমাণ বল দ্বারা পরস্পরকে আকর্ষণ করে তার সংখ্যাগত মানকে মহাকর্ষীয় ধ্রুবক বলে।”
যদি বলা হয় “G = 6.67 x 10-11 এস. আই. একক” – এর অর্থ এই যে, দুটি বস্তুকণার প্রত্যেকটির ভর 1 কিলোগ্রাম এবং তাদের মধ্যবর্তী দূরত্ব 1 মিটার হলে তারা পরস্পরকে 6.67 × 10-11 নিউটন বল দ্বারা আকর্ষণ করবে।
এস. আই. পদ্ধতিতে F-এর একক নিউটন, d-এর একক মিটার এবং m-এর একক কিলোগ্রাম।
তা হলে উপরের সমীকরণ (2)-এ বিভিন্ন রাশির একক বসালে, এম. কে. এস. ও এস. আই. পদ্ধতিতে G-এর_
একক নিউটন-মিটার২/ কিলোগ্রাম২ (N-m2. kg-2)।
সমীকরণ (1) অনুসারে G-এর মাত্রা সমীকরণ,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi>G</mi></mfenced><mo>=</mo><mfrac><mfenced open="[" close="]"><mrow><mi>F</mi><mo>×</mo><msup><mi>d</mi><mn>2</mn></msup></mrow></mfenced><mfenced open="[" close="]"><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>×</mo><msub><mi>m</mi><mn>2</mn></msub></mrow></mfenced></mfrac><mo>=</mo><mfrac><mfenced open="[" close="]"><mrow><mi>M</mi><mi>L</mi><msup><mi>T</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>×</mo><msup><mi>L</mi><mn>2</mn></msup></mrow></mfenced><mfenced open="[" close="]"><mrow><msup><mi>M</mi><mn>2</mn></msup></mrow></mfenced></mfrac><mo>=</mo><mfenced open="[" close="]"><mrow><msup><mi>M</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>T</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><msup><mi>L</mi><mn>3</mn></msup></mrow></mfenced></math>
G-কে বিশ্বজনীন বা সর্বজনীন ধ্রুবক বলা হয়। কারণ G-এর মান বস্তুকণা দুটির মধ্যবর্তী মাধ্যমের উপর কিংবা বস্তুকণা দুটির ভৌত অবস্থার উপর নির্ভর করে না। পদার্থবিজ্ঞানে অনেক ধ্রুবক রয়েছে যাদের ে কোনটি মাধ্যমের প্রকৃতির উপর নির্ভর করে, বস্তুর অবস্থার উপর (যেমন তাপমাত্রা, চাপ ইত্যাদি) নির্ভর করে, বস্তুর প্রকৃতির উপর নির্ভর করে। কিন্তু মহাকর্ষীয় ধ্রুবক এমন একটি ধ্রুবক যার মান সর্বত্র এবং সব অবস্থায় একই থাকে, কোন পরিবর্তন হয় না। এই কারণেই এই ধ্রুবককে বিশ্বজনীন ধ্রুবক বলে।
মহাকর্ষীয় ধ্রুবকের মান নির্ণয়ের জন্য অনেকগুলো পদ্ধতি আছে। তবে এখানে আমরা ক্যাভেন্ডিসের পদ্ধতি আলোচনা করব ।
1798 খ্রিস্টাব্দে বিজ্ঞানী ক্যাভেন্ডিস মহাকর্ষীয় ধ্রুবকের মান নির্ণয়ের জন্য একটি ব্যবর্ত তুলা পদ্ধতি উদ্ভাবন করেন। তাঁর নাম অনুসারে এই পদ্ধতিকে ক্যাভেন্ডিসের পদ্ধতি বলা হয়।
এই যন্ত্রে সীসার তৈরি চারটি গোলক (A, B, C ও D) আছে। এদের মধ্যে A ও B ছোট এবং C ও D দুটি বড় গোলক[চিত্র ৭.২] । C এবং D একটি অনুভূমিক দণ্ড PQ-এর দু'প্রান্ত হতে ঝুলান হয়েছে। দণ্ডটি একটি উল্লম্ব অক্ষ XX'-এর সাথে যুক্ত থাকে। এই অক্ষ একটি চাকা W-এর সঙ্গে যুক্ত থাকে। চাকাটি বাহির হতে ঘুরানোর ব্যবস্থা থাকে। এর কিছুটা নিচে একই অক্ষে একটি ব্যবর্তন শীর্ষ ( torsion head) H হতে ব্যবর্তন তারের (T) সাহায্যে একটি হাল্কা দণ্ড RS ঝুলান আছে। RS-এর দু'প্রান্ত হতে দুটি ছোট সমান ভরের গোলক A ও B ঝুলান আছে। A, B এবং C, D একই অনুভূমিক তলে থাকে। T ব্যবর্তন তারের সাথে একটি দর্পণ (E) লাগানো থাকে। একটি আলোক উৎস (L) হতে দর্পণের উপর আলোক রশ্মি আপতিত করানো হয় এবং প্রতিফলিত রশ্মি একটি স্কেলের (S) উপর নিক্ষেপ করানো হয়। স্কেলের উপর প্রতিফলিত আলোক রশ্মির সরণ পরিমাপ করে ব্যবর্তন তারের মোচড় কোণ পরিমাপ করা হয়।
প্রথমে চাকা W-এর সাহায্যে PQ দণ্ডকে ঘুরিয়ে বড় গোলক দুটিকে দূরে সরিয়ে নেয়া হয় যাতে ছোট গোলকের উপরে প্রভাব না পড়ে। এই অবস্থায় স্কেলে দর্পণ E হতে প্রতিফলিত রশ্মির অবস্থানের পাঠ নেয়া হয়। এরপর বড় গোলক দুটিকে ছোট গোলক দুটির কাছাকাছি অবস্থানে আনা হয়। প্রত্যেক বড় গোলক (C বা D) তার নিকটে অবস্থিত ছোট গোলকের (A বা B) উপর একটি আকর্ষণ বল প্রয়োগ করে। সমান ও বিপরীতমুখী এই দুটি বল একটি বিক্ষেপী দ্বন্দ্বের (deflecting couple) সৃষ্টি করে যার ফলে RS দন্ডটি একটি ক্ষুদ্র কোণে ঘুরতে বাধ্য হয়। সুতরাং ব্যবর্তন তারে পাক পড়ে। তারটি এর স্থিতিস্থাপকতা ধর্মের জন্য বিপরীতমুখী প্রত্যায়নী দ্বন্দ্বের (restoring couple) সৃষ্টি করে দণ্ডটিকে পূর্বের অবস্থানে ফিরিয়ে নিতে সচেষ্ট হয়। দুটি পরস্পর বিপরীতমুখী দ্বন্দ্বের ক্রিয়ায় দণ্ডটি একটি সাম্য অবস্থানে আসে। এই অবস্থায় স্কেলে দর্পণ হতে প্রতিফলিত রশ্মির নতুন অবস্থানের পাঠ নেয়া হয়। প্রথম পাঠ ও দ্বিতীয় পাঠের পার্থক্য হতে দণ্ডের কৌণিক বিক্ষেপ নির্ণয় করা হয়। এরপর বড় গোলক দুটির অবস্থান [চিত্র ৭.৩] পূর্ব অবস্থান (K, m)-এর বিপরীত পার্শ্বে করা হয়।[চিত্রে K', m´ অবস্থান]। এভাবে ঘুরিয়ে দণ্ডের কৌণিক বিক্ষেপের মান বের করা হয়। পরিশেষে এই দুটি বিক্ষেপের গড় মান নির্ণয় করা যায় ।
মনে করি,
প্রত্যেকটি বড় গোলকের ভর =M
প্রত্যেকটি ছোট গোলকের ভর = m
RS দণ্ডের দৈর্ঘ্য = 2l
দণ্ডটির সাম্যাবস্থায় বড় ও ছোট্ গোলকের কেন্দ্রবিন্দুর মধ্যবর্তী দূরত্ব = d
A ও C গোলকের মধ্যকার আকর্ষণ বল,
B এবং D গোলক দুটির মধ্যে অনুরূপ আকর্ষণ বল বিদ্যমান আছে। এই দুটি সমান ও বিপরীতমুখী বল একটি দ্বন্দ্বের সৃষ্টি করে ।
অতএব, ব্যবর্তন শীর্ষ H সাপেক্ষে বিক্ষেপী দ্বন্দ্বের মোমেন্ট
দন্ডটি যদি '' কোণে বিচ্যুত হয় তাহলে মোচড়ের জন্য ব্যবর্তন তারে (T)
প্রত্যায়নী দ্বন্দ্বের মোমেন্ট =
এখানে = প্রতি ডিগ্রী বিক্ষেপের জন্য প্রত্যায়নী দ্বন্দ্বের মোমেন্ট।
সাম্যাবস্থায়, বিক্ষেপী দ্বন্দ্বের মোমেন্ট = প্রত্যায়নী দ্বন্দ্বের মোমেন্ট।
বা,
:-
এখন , d, 2l, M এবং m পরীক্ষা হতে জানা যায়। -এর মান জানা থাকলেই G-এর মান পাওয়া যাবে।
-এর মান নির্ণয় করার জন্য বড় দুটি গোলককে সরিয়ে ফেলি। তারপর ছোট দুটি গোলকসহ RS দণ্ডকে ব্যবর্তন তার T-এর সাপেক্ষে ব্যবর্তন দোলনে দোলাই এবং দোলনকাল নির্ণয় করি। যদি দোলনকাল T হয়, তবে,
বা,
সমীকরণ (6) হতে পাই,
সমীকরণ (7)-এর ডান পাশের সকল রাশির মান জানা থাকায় G-এর মান বের করা যায়। বিজ্ঞানী ক্যাভেন্ডিস এ পরীক্ষা বারবার পুনরাবৃত্তি করেন এবং G-এর গড় মান বের করেন। এর লব্ধ মান হল
G = (6.754 0.41) × 10-11 N-m² kg-2
নিউটনের গতির সূত্র অনুসারে বস্তুর উপর বল প্রয়োগ করলে ত্বরণ সৃষ্টি হয়। অভিকর্ষও একটি বল। এই বল কোন একটি বস্তুর উপর ক্রিয়া করে ত্বরণ সৃষ্টি করবে। অতএব, বস্তুতে অভিকর্ষ বল কর্তৃক যে ত্বরণ উৎপন্ন হয় তাকে অভিকর্ষজ ত্বরণ বলে। অথবা কোন স্থানে অভিকর্ষের টানে মুক্তভাবে পড়ন্ত বস্তুর বেগ যে হারে বৃদ্ধি পায় তাকে ঐ স্থানের অভিকর্ষজ বা অভিকর্ষীয় ত্বরণ বলে। একে 'g' দ্বারা প্রকাশ করা হয়।
পরীক্ষার সাহায্যে জানা গেছে, বাধাহীন পথে ও একই স্থান হতে সকল বস্তু সমত্বরণে পৃথিবীর কেন্দ্রের দিকে পতিত হয়। স্থানভেদে এই ত্বরণের মান বিভিন্ন। সুতরাং অভিকর্ষজ ত্বরণ বস্তু নিরপেক্ষ, স্থান নিরপেক্ষ নয়।
এর একক এম. কে. এস. ও আন্তর্জাতিক SI পদ্ধতিতে মিটার/সে.২। এর মাত্রা সমীকরণ [LT-2]।
মনে করি ‘m’ ভরবিশিষ্ট একটি বস্তুকণা পৃথিবী পৃষ্ঠে অবস্থিত এবং পৃথিবী একটি গোলাকার বস্তু [চিত্র ৭.৪ ]। যদি পৃথিবীর ভর ‘M' এবং ব্যাসার্ধ 'R' হয়, তবে নিউটনের মহাকর্ষ সূত্র হতে আমরা পাই,
পুনরায়, নিউটনের গতির দ্বিতীয় সূত্র হতে আমরা পাই,
বল = ভর x ত্বরণ
অভিকর্ষীয় বল = বস্তুর ভর × অভিকর্ষজ ত্বরণ। অর্থাৎ,
সমীকরণ (8) এবং সমীকরণ (9) হতে আমরা পাই,
বা,
এটিই হল ভূ-পৃষ্ঠে অভিকর্ষজ ত্বরণের সমীকরণ। সমীকরণ অনুসারে অভিকর্ষজ ত্বরণ ৪ বস্তুর ভর m-এর
উপর নির্ভর করে না। আবার, আমরা জানি G এবং M ধ্রুব রাশি। অতএব ভূ-পৃষ্ঠের কোন স্থানে ‘g ’-এর মান ভূ-কেন্দ্র হতে ঐ স্থানের দূরত্বের উপর নির্ভর করে। এটি হতে এই সিদ্ধান্তে উপনীত হওয়া যায় যে, ভূ-পৃষ্ঠের কোন একটি স্থানে g-এর মান নির্দিষ্ট, কিন্তু স্থানভেদে এর পরিবর্তন ঘটে।
পৃথিবীর ভর M= 5.983 × 1024 kg এবং ব্যাসার্ধ R = 6.36 x 106m ধরে উপরের সমীকরণ অনুসারে ভূ-পৃষ্ঠের g-এর মান হয়,
অভিকর্ষজ ত্বরণ ধ্রুব নয়। তিনটি কারণে এর তারতম্য ঘটে :
পৃথিবীর কেন্দ্র হতে কোন স্থানের দূরত্বের তারতম্য ভেদে অভিকর্ষজ ত্বরণ 'g'-এর মানের পরিবর্তন ঘটে। এটি আলোচনা করতে হলে তিনটি বিষয় আলোচনা করতে হয়; যথা—
কোন বস্তু যদি ‘M’ ভর এবং ‘R’ ব্যাসার্ধবিশিষ্ট পৃথিবী পৃষ্ঠে অবস্থান করে [ চিত্র ৭.৫ ] তবে ঐ বস্তুর উপর তথা ভূ-পৃষ্ঠে,
এখানে, p = পৃথিবীর উপাদানের গড় ঘনত্ব ও = পৃথিবীর আয়তন ।
মনে করি M পৃথিবীর ভর এবং R তার ব্যাসার্ধ। যদি বস্তু পৃথিবী পৃষ্ঠ হতে h উচ্চতায় উপরে অবস্থান করে। [চিত্র ৭.৬] তবে ঐ বস্তুর উপর তথা ভূ-পৃষ্ঠ হতে h উচ্চতায় অভিকর্ষীয় ত্বরণ,
সমীকরণ (11) অপেক্ষা সমীকরণ (13)-এ হরের মান বেশি। কাজেই ভাগফল অর্থাৎ অভিকর্ষীয় ত্বরণ-এর মান কম হবে। অতএব পৃথিবী পৃষ্ঠ অপেক্ষা উপরে অভিকর্ষীয় ত্বরণ-এর মান কম হবে এবং দূরত্বের বর্গের ব্যস্তানুপাতে পরিবর্তিত হবে। সুতরাং দূরত্ব বাড়লে অভিকর্ষীয় ত্বরণ-এর মান কমবে এবং দূরত্ব কমলে অভিকর্ষীয় ত্বরণ-এর মান বাড়বে। এই কারণে পাহাড়ের উপর অভিকর্ষীয় ত্বরণ-এর মান পৃথিবী পৃষ্ঠে অভিকর্ষীয় ত্বরণ-এর মান অপেক্ষা কম হয়।
সমীকরণ (13)-কে সমীকরণ (10) দ্বারা ভাগ করে পাওয়া যায়,
হলে,
বা,
অর্থাৎ,
মনে করি পৃথিবী পৃষ্ঠ হতে h দূরত্ব নিচে B বিন্দুতে কোন বস্তু আছে এবং ঐ স্থানে অভিকর্ষীয় ত্বরণ gd [চিত্র ৭.৭]। B বিন্দুতে অবস্থিত যে কোন বস্তুর উপর ভূ-কেন্দ্র O-এর দিকে পৃথিবীর আকর্ষণ (R-h) ব্যাসার্ধবিশিষ্ট AB গোলকের আকর্ষণের সমান। এই গোলকের বাইরের অংশ বস্তুর উপর কার্যকর কোন আকর্ষণ প্রয়োগ করে না।
এখন AB গোলকের আয়তন
AB গোলকের ভর M´ ধরলে,
M = আয়তন × ঘনত্ব
বা, (15)
(16)
এখানে, একটি ধ্রুব রাশি।
উপরের সমীকরণ অনুসারে h-এর মান যত বাড়বে, (R-h )-এর মান তত কমবে। অতএব, যত পৃথিবীর ভেতরের দিক যাওয়া যাবে, অভিকর্ষীয় ত্বরণ-এর মান ততই কমবে অর্থাৎ ভূ-গর্ভে অভিকর্ষীয় ত্বরণ ভূ-কেন্দ্র হতে দূরত্বের সমানুপাতিক। এভাবে যেতে যেতে যদি ভূ-কেন্দ্রে পৌঁছা যায় তবে h-এর মান R-এর সমান হবে।
অতএব ভূ-কেন্দ্রে, gd = k (R - R)
বা, gd = 0
(i) সমীকরণ (11) হতে সরাসরি সমীকরণ (15) পাওয়া যায়।
(ii) সমীকরণ (15)-কে সমীকরণ (12) দ্বারা ভাগ করে পাওয়া যায়
অর্থাৎ, gd < g
আমরা জানি পৃথিবী সম্পূর্ণ গোলাকার নয় ৷ এর আকৃতি উপগোলকীয় (spheroidal)। উত্তর ও দক্ষিণ মেরু কিছুটা চাপা এবং বিষুব-ব্যাস মেরু-ব্যাস অপেক্ষা প্রায় 43 km বৃহত্তর। সুতরাং বিষুব রেখায় অবস্থিত কোন বস্তু মেরু অঞ্চলে অবস্থিত বস্তু অপেক্ষা পৃথিবীর কেন্দ্র হতে অধিক দূরে অবস্থিত। অতএব বিষুব রেখায় অবস্থিত কোন বস্তুর উপর অভিকর্ষীয় আকর্ষণ বল মেরুতে অবস্থিত ঐ বস্তুর উপর অভিকর্ষীয় আকর্ষণ বল অপেক্ষা কম। সুতরাং বিষুব রেখায় 'g'-এর মান কম এবং মেরু অঞ্চলে 'g'-এর মান বেশি।
পৃথিবীর আহ্নিক বা দৈনিক গতির সাথে সাথে ভূ-পৃষ্ঠের যে কোন একটি বস্তু পৃথিবীর সাথে তার অক্ষের চর্তুদিকে সমান কৌণিক বেগে প্রদক্ষিণ করবে। এতে বস্তুটির উপর একটি কেন্দ্রমুখী বল প্রযুক্ত হবে এবং বস্তুটি তার বৃত্তাকার পথের ব্যাসার্ধ বরাবর ছিটকে বাইরের দিকে চলে যাবার চেষ্টা করবে। বস্তুর ওজনের কিছু অংশ এই কেন্দ্রবিমুখী বল প্রশমিত করতে ব্যয় হবে। ফলে অভিকর্ষীয় ত্বরণ ‘8' হ্রাস পাবে। আবার মেরু অঞ্চল অপেক্ষা বিষুব অঞ্চলে বস্তু অপেক্ষাকৃত বড় ব্যাসার্ধের বৃত্তাকার পথে ঘুরবে বলে কেন্দ্রবিমুখী বলও বৃদ্ধি পাবে। কাজেই g-এর মান মেরু অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম হবে।
ধরা যাক m ভরের একটি বস্তু ভূ-পৃষ্ঠে (উত্তর) অক্ষাংশে P বিন্দুতে অবস্থান করে পৃথিবীর ঘূর্ণনে তার অক্ষ NS-এর চতুর্দিকে সমকৌণিক বেগে r ব্যাসার্ধবিশিষ্ট বৃত্তাকার পথে ঘুরছে [চিত্র : ৭.৮]। তা হলে বস্তুটির উপর তার বৃত্তাকার পথের স্পর্শক PT বরাবর সৃষ্ট কেন্দ্রবিমুখী বল,
PO বা ভূ-কেন্দ্র বরাবর বস্তুটির উপর পৃথিবীর আকর্ষণ,
OPD - বরাবর বা ভূ-কেন্দ্র হতে বাইরের দিকে কেন্দ্রবিমুখী বলের অংশক
T cosλ = m2r cos λ = m2 R cos2λ
বল দুটির লব্ধি,
(19)
P বিন্দুতে ভূ-কেন্দ্র অভিমুখে অভিকর্ষজ ত্বরণ হলে,
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>F</mi><mi>λ</mi></msub><mo>=</mo><mi>m</mi><msub><mi>g</mi><mi>λ</mi></msub><mo>=</mo><mfrac><mrow><mi>G</mi><mi>M</mi><mi>m</mi></mrow><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac><mo>−</mo><mi>m</mi><msup><mi>ω</mi><mn>2</mn></msup><mi>R</mi><mo> </mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>λ</mi></math>
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>g</mi><mi>λ</mi></msub><mo>=</mo><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac><mo>−</mo><msup><mi>ω</mi><mn>2</mn></msup><mi>R</mi><mo> </mo><mi>c</mi><mi>o</mi><msup><mi>s</mi><mn>2</mn></msup><mi>λ</mi></math> (20)
বিষুব অঞ্চলে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>0</mn><mo>°</mo></math>
আবার মেরু অঞ্চলে, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>λ</mi><mo>=</mo><mn>9</mn><mn>0</mn><mo>°</mo></math>
কাজেই, g-এর মান মের অঞ্চলে সবচেয়ে বেশি এবং বিষুব অঞ্চলে সবচেয়ে কম হবে।
(১) পৃথিবীর পৃষ্ঠ হতে উপর দিকে উঠলে এর মান কমে।
(২) পৃথিবীর অভ্যন্তরে নামলে এর মান কমে।
(৩) বিষুবীয় অঞ্চল হতে মেরু অঞ্চলে অগ্রসর হলে এর মান বাড়ে।
(৪) ঘূর্ণনজনিত কারণে মেরু অঞ্চলে এর মান অল্প কমে, কিন্তু বিষুবীয় অঞ্চলে বেশি কমে।
(৫) মেরুতে g-এর মান = 9.832 ms-2 ; বিষুব অঞ্চলে g-এর মান = 9.780 ms-2 |
ঢাকায় g-এর মান = 9.7835 ms-2 ; রাজশাহীতে g-এর মান = 9.790 ms-2 |
(৬) ভূ-পৃষ্ঠে g-এর মান বিভিন্ন স্থানে বিভিন্ন বলে সমুদ্র পৃষ্ঠে এবং 45° অক্ষাংশের g-এর মানকে আদর্শ মান ধরা হয়। g-এর আদর্শ বা ব্যবহারিক মান = 9.81 ms-2।
(৭) g-এর মান জেনে পৃথিবীর গড় ঘনত্ব সম্বন্ধে একটি ধারণা লাভ করা যায়।
মনে করি পৃথিবীর ভর = M, ব্যাসার্ধ = R এবং ভূ-পৃষ্ঠে অবস্থিত কোন বস্তুর ভর = m [চিত্র ৭.৯]। উক্ত বস্তুকে পৃথিবী যে বল দ্বারা আকর্ষণ করে তার মান,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi><mo>=</mo><mi>G</mi><mfrac><mrow><mi>M</mi><mi>m</mi></mrow><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac></math> (21)
পর্যবেক্ষণ স্থানে অভিকর্ষজ ত্বরণের মান g হলে বস্তুর ওজন,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>=</mo><mi>F</mi><mo>=</mo><mi>m</mi><mi>g</mi></math> (22)
এখন সমীকরণ (21) ও (22) হতে পাই,
<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mi>g</mi><mo>=</mo><mi>G</mi><mfrac><mrow><mi>M</mi><mi>m</mi></mrow><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac></math>
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>g</mi><mo>=</mo><mfrac><mrow><mi>G</mi><mi>M</mi></mrow><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></mfrac></math>
বা, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><mrow><mi>g</mi><msup><mi>R</mi><mn>2</mn></msup></mrow><mi>G</mi></mfrac></math> (23)
সমীকরণ (23)-এ, g = 9.8 ms-2, R = 6.37 × 106 m, G = 6.673 x 10-11 Nm-2kg-2 বসিয়ে,
মনে করি পৃথিবীর গড় ঘনত্ব =
ভর/আয়তন =
=5.5 x 103 kg m-3|
একে সাধারণত ‘M’ বা 'm' দ্বারা প্রকাশ করা হয়। এটি একটি স্কেলার রাশি। বস্তুর ভর স্থান নিরপেক্ষ অর্থাৎ যে কোন স্থানে নেয়া হোক না কেন এর মান সর্বত্র স্থির থাকবে। বস্তুর ভর তার স্থিতি, গতি, তাপমাত্রা, চুম্বকত্ব বা তড়িতাবস্থা দ্বারা প্রভাবিত হয় না। সেজন্য ভর বস্তুর একটি স্বাভাবিক ধর্ম। এক্ষেত্রে উল্লেখ করা যেতে পারে যে কোন বস্তুর বেগ যদি আলোর বেগের কাছাকাছি হয় তা হলে বস্তুর ভরের পরিবর্তন দেখা যায়। বেগের সঙ্গে বস্তুর ভর পরিবর্তনের তত্ত্ব আইনস্টাইন (Einstein)-এর আপেক্ষিক তত্ত্বে (Theory of relativity) বিশদভাবে আলোচিত হয়েছে।
একে W দ্বারা প্রকাশ করা হয়। যেহেতু ওজন একটি বল ছাড়া আর কিছুই নয়, সুতরাং এটি একটি ভেক্টর রাশি এবং এর মান, w = ভর × অভিকর্ষজ ত্বরণ
বা, W = mg (25)
বিভিন্ন স্থানে g-এর মান বিভিন্ন বলে স্থানভেদে বস্তুর ওজন পরিবর্তিত হয়। অতএব বস্তুর ওজন স্থান নিরপেক্ষ নয়। এই প্রসংগে আরও বলা যায় যে, বস্তুর ওজন তার একটি মৌলিক বৈশিষ্ট্য নয়। বস্তুর ওজন থাকতে পারে, নাও থাকতে পারে। যেমন পৃথিবীর কেন্দ্রে বস্তুর কোন ওজন নেই।
আমরা জানি, ওজন W = mg ;
এখানে m = বস্তুর ভর এবং g =অভিকর্ষজ ত্বরণ।
বস্তুর ভর একটি ধ্রুব রাশি; সুতরাং কোন বস্তুর ওজন অভিকর্ষজ ত্বরণের উপর নির্ভরশীল। যে স্থানে অভিকর্ষজ ত্বরণ বেশি, সে স্থানে বস্তুর ওজনও বেশি। আর অভিকর্ষজ ত্বরণ যে স্থানে কম বস্তুর ওজনও সে স্থানে কম। উদাহরণস্বরূপ বলা যায়, মেরু অঞ্চলে অভিকর্ষজ ত্বরণ বেশি। সুতরাং মেরু অঞ্চলে বস্তুর ওজন বেশি। বিষুব অঞ্চলে অভিকর্ষজ ত্বরণ কম। অতএব বিষুব অঞ্চলে বস্তুর ওজনও কম। পৃথিবীর কেন্দ্রে অভিকর্ষজ ত্বরণ শূন্য। অতএব পৃথিবীর কেন্দ্রে বস্তুর কোন ওজন নেই।
মহাকর্ষীয় ধ্রুবক | অভিকর্ষজ ত্বরণ |
---|---|
১। একক ভরবিশিষ্ট দুটি বস্তুর মধ্যবর্তী দূরত্ব এক একক হলে তাদেঁর পারস্পরিক আকর্ষণ বলকে মহাকর্ষীয় ধ্রুবক বলে। | ১। অভিকর্ষ বলের জন্য বস্তুতে যে ত্বরণ সৃষ্টি হয় তাকে অভিকর্ষজ ত্বরণ বলে। |
২। এর মাত্রা সমীকরণ | ২। এর মাত্রা সমীকরণ |
৩। একটি বিশ্বজনীন ধ্রুবক । | ৩। এটি একটি পরিবর্তনশীল রাশি। |
৪। এস. আই. পদ্ধতিতে এর মান 6.657 x 10-11 Nm2kg-2 | ৪। এস.আই.পদ্ধতিতে এর মান ভূ-পৃষ্ঠে 9.81 ms-2 |
৫। এর মান বস্তুর ভরের উপর বা ভূ-কেন্দ্র হতে বস্তুর দূরত্বের উপর নির্ভর করে | ৫। এর মান বস্তুর ভরের উপর নির্ভর করে না, কিন্তু দূরত্বের উপর নির্ভর করে না । |
৬। এটি একটি স্কেলার রাশি। | ৬। এটি একটি ভেক্টর রাশি |
আমরা জানি, কোন একটি বস্তু যে পরিমাণ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৃষ্ট হয়, তাকে বস্তুর ওজন বা ভার বলে।
মনে করি A একটি দৃঢ় বস্তু। তা কতকগুলো বস্তুকণার সমষ্টি। প্রতিটি কণাই অভিকর্ষ বল দ্বারা পৃথিবীর কেন্দ্রের দিকে আকৰ্ষিত হবে। এই সব বল মিলিত হয়ে একটি লব্ধি বল সৃষ্টি করবে। বস্তুটিকে ঘুরে ফিরে যেভাবেই রাখা হোক না কেন কণাগুলোর উপর পৃথিবীর আকর্ষণ বলের পরিমাণ, অভিমুখ ও ক্রিয়াবিন্দুর এবং সেই সঙ্গে ঐ বলগুলোর লন্দির পরিমাণ, অতিমুখ ও ক্রিয়াবিন্দুর কোন পরিবর্তন হবে না। এই লব্ধি বলই বস্তুর ওজন। [চিত্র ৭.১০]-এ ওজন বা বল বস্তুর 'G' বিন্দুর মধ্য দিয়ে ক্রিয়া করছে। এই বিন্দুই বস্তুটির অভিকর্ষ কেন্দ্র বা ভারকেন্দ্র।