কিছু গুরুত্বপূর্ণ ফাংশনের লেখচিত্র

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | NCTB BOOK
Please, contribute to add content into কিছু গুরুত্বপূর্ণ ফাংশনের লেখচিত্র.
Content

দ্বিঘাত ফাংশন (Quadratic Function) হলো এমন একটি ফাংশন, যার ডিগ্রি ২ এবং সাধারণত এটি একটি প্যারাবোলা আকারের গ্রাফ তৈরি করে। দ্বিঘাত ফাংশনের সাধারণ রূপ হলো:

\[
f(x) = ax^2 + bx + c
\]

এখানে \(a\), \(b\), এবং \(c\) হলো ধ্রুবক, যেখানে \(a \neq 0\)।


দ্বিঘাত ফাংশনের বৈশিষ্ট্য

১. ডোমেন: দ্বিঘাত ফাংশনের ডোমেন সব বাস্তব সংখ্যা \( \mathbb{R} \), কারণ এটি যেকোনো রিয়াল ইনপুট গ্রহণ করতে পারে।

২. রেঞ্জ: ফাংশনের গ্রাফ যদি উপরের দিকে খোলা প্যারাবোলা হয় (\( a > 0 \)), তাহলে এর রেঞ্জ হবে \( y \geq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বনিম্ন বিন্দু (vertex)। আবার, যদি প্যারাবোলা নিচের দিকে খোলা হয় (\( a < 0 \)), তাহলে রেঞ্জ হবে \( y \leq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বোচ্চ বিন্দু।

৩. শীর্ষ বিন্দু (Vertex): দ্বিঘাত ফাংশনের শীর্ষ বিন্দু বা ভেরটেক্স হলো প্যারাবোলার সেই বিন্দু, যেখানে এটি সর্বোচ্চ বা সর্বনিম্ন মান ধারণ করে। শীর্ষ বিন্দুটি \( \left( -\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \) দ্বারা নির্ধারিত হয়।

৪. অক্ষীয় প্রতিসাম্য (Axis of Symmetry): দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে থাকে এবং এটি একটি প্রতিসাম্য অক্ষ (axis of symmetry) এর চারপাশে প্রতিসম থাকে। এই অক্ষটি \( x = -\frac{b}{2a} \)।

  1. শূন্যস্থান বা মূল (Roots or Zeros): দ্বিঘাত ফাংশনের মূলগুলো এমন বিন্দু, যেখানে \( f(x) = 0 \)। এদেরকে সমীকরণ \( ax^2 + bx + c = 0 \) সমাধান করে বের করা যায়, যা সাধারণত বর্গমূল সূত্র দ্বারা নির্ধারিত হয়:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]


উদাহরণ

ধরা যাক একটি দ্বিঘাত ফাংশন \( f(x) = x^2 - 4x + 3 \)।

  • ডোমেন: সব বাস্তব সংখ্যা, \( x \in \mathbb{R} \)।
  • রেঞ্জ: \( y \geq -1 \) (কারণ \( a = 1 > 0 \), তাই এটি উপরের দিকে খোলা)।
  • শীর্ষ বিন্দু: \( x = \frac{-(-4)}{2 \cdot 1} = 2 \), এবং \( f(2) = 2^2 - 4 \times 2 + 3 = -1 \), তাই শীর্ষ বিন্দু \( (2, -1) \)।
  • অক্ষীয় প্রতিসাম্য: \( x = 2 \)।
  • মূল: \( x^2 - 4x + 3 = 0 \) সমাধান করলে পাই \( x = 1 \) এবং \( x = 3 \)।

গ্রাফিকাল বৈশিষ্ট্য

দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে হয় এবং এটি \( y \)-অক্ষ বরাবর উভয় দিকে প্রতিসম থাকে। প্যারাবোলার শীর্ষ বিন্দুর উপর নির্ভর করে এটি উপরের দিকে খোলা বা নিচের দিকে খোলা থাকতে পারে।

দ্বিঘাত ফাংশন বাস্তব জীবনের বিভিন্ন চক্রাকার এবং সুনির্দিষ্ট পরিমাপের সমস্যায় ব্যবহৃত হয়, যেমন নিক্ষেপণ গতিবিদ্যা (Projectile Motion), অপটিমাইজেশন, এবং বক্রতা বিশ্লেষণে।

সূচক ফাংশন (Exponential Function) এমন একটি ফাংশন, যেখানে ভেরিয়েবলটি সূচকে বা ঘাতে থাকে। এটি সাধারণত নিম্নোক্ত আকারে প্রকাশ করা হয়:

\[
f(x) = a \cdot b^x
\]

এখানে:

  • \( a \) হলো ধ্রুবক (যা \( 0 \neq a \)) এবং এটি ফাংশনের প্রাথমিক মান নির্দেশ করে।
  • \( b \) হলো বেস বা ভিত্তি (এবং \( b > 0 \) এবং \( b \neq 1 \)) যা সূচকে ব্যবহৃত হয়।
  • \( x \) হলো ভেরিয়েবল বা সূচক।

সূচক ফাংশনের বৈশিষ্ট্য

১. ডোমেন: সূচক ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: সূচক ফাংশনের রেঞ্জ \( y > 0 \), অর্থাৎ সব ধনাত্মক বাস্তব সংখ্যা।

৩. ক্ষয় ও বৃদ্ধির ধরন:

  • যদি \( b > 1 \) হয়, তাহলে ফাংশনটি ধনাত্মক গতিতে বৃদ্ধি পায় (Exponential Growth)।
  • যদি \( 0 < b < 1 \) হয়, তাহলে ফাংশনটি ক্রমাগত ক্ষয় পায় (Exponential Decay)।

৪. অক্ষীয় ছেদ বিন্দু: যখন \( x = 0 \), তখন \( f(x) = a \cdot b^0 = a \cdot 1 = a \)। অর্থাৎ, সূচক ফাংশনের গ্রাফ সবসময় \( y \)-অক্ষকে \( (0, a) \) বিন্দুতে অতিক্রম করে।

৫. আসমানটোট: সূচক ফাংশনের একটি আসমানটোট থাকে, যা \( y = 0 \) রেখার সমান্তরাল এবং এই রেখাকে ফাংশনের মান স্পর্শ করে না।


উদাহরণ

১. যদি \( f(x) = 2^x \) হয়, তবে এটি একটি বৃদ্ধি ফাংশন (Exponential Growth), কারণ \( b = 2 > 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

২. যদি \( f(x) = 0.5^x \) হয়, তবে এটি একটি ক্ষয় ফাংশন (Exponential Decay), কারণ \( 0 < b = 0.5 < 1 \)। এখানে:

  • ডোমেন: সব বাস্তব সংখ্যা।
  • রেঞ্জ: \( y > 0 \)।
  • অক্ষীয় ছেদ বিন্দু: \( (0, 1) \)।

সূচক ফাংশনের ব্যবহার

সূচক ফাংশন বাস্তব জীবনের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • বৃদ্ধি: জনসংখ্যা বৃদ্ধি, ব্যাঙ্কে সুদের হিসাব, এবং বিনিয়োগের বৃদ্ধি।
  • ক্ষয়: তেজস্ক্রিয় ক্ষয়, ঔষধের ক্ষয়, এবং তাপীয় ক্ষয়।
  • গণনা: কম্পিউটারে লজিক্যাল অপারেশন এবং সংকেত বিশ্লেষণেও সূচক ফাংশন ব্যবহার করা হয়।

সূচক ফাংশনের মাধ্যমে বিভিন্ন পরিবর্তনশীল গাণিতিক সমস্যা এবং চক্রাকার ঘটনাগুলোকে বিশ্লেষণ করা সহজ হয়।

লগারিদমিক ফাংশন

লগারিদমিক ফাংশন (Logarithmic Function) হলো এমন একটি ফাংশন, যা একটি নির্দিষ্ট ভিত্তি (base) নিয়ে একটি সংখ্যার লগারিদম নির্ণয় করে। লগারিদমিক ফাংশন মূলত সূচক ফাংশনের বিপরীত (inverse) ফাংশন হিসেবে কাজ করে। এর সাধারণ রূপ:

\[
f(x) = \log_b(x)
\]

এখানে:

  • \( b \) হলো লগারিদমের ভিত্তি (base) এবং \( b > 0 \) ও \( b \neq 1 \) হতে হবে।
  • \( x \) হলো সেই সংখ্যা, যার লগারিদম নির্ণয় করতে হবে এবং \( x > 0 \) হতে হবে।

লগারিদমিক ফাংশনের বৈশিষ্ট্য

১. ডোমেন: লগারিদমিক ফাংশনের জন্য ডোমেন হলো সব ধনাত্মক বাস্তব সংখ্যা, অর্থাৎ \( x > 0 \)।

২. রেঞ্জ: লগারিদমিক ফাংশনের রেঞ্জ হলো সব বাস্তব সংখ্যা, অর্থাৎ \( y \in \mathbb{R} \)।

৩. বিপরীত ফাংশন: লগারিদমিক ফাংশন হলো সূচক ফাংশনের বিপরীত। অর্থাৎ, যদি \( f(x) = b^x \) হয়, তবে এর বিপরীত ফাংশন \( f^{-1}(x) = \log_b(x) \)।

৪. বেসের প্রভাব:

  • যদি \( b > 1 \) হয়, তাহলে লগারিদমিক ফাংশনের গ্রাফ ধীরে ধীরে বৃদ্ধি পায় (increasing)।
  • যদি \( 0 < b < 1 \) হয়, তাহলে গ্রাফ ধীরে ধীরে হ্রাস পায় (decreasing)।

৫. অক্ষীয় ছেদ বিন্দু: লগারিদমিক ফাংশনের গ্রাফ \( (1, 0) \) বিন্দুতে \( x \)-অক্ষকে অতিক্রম করে, কারণ \( \log_b(1) = 0 \)।

৬. আসমানটোট: লগারিদমিক ফাংশনের একটি আসমানটোট থাকে, যা \( x = 0 \) রেখার সমান্তরাল। গ্রাফ কখনোই \( x = 0 \) রেখাকে স্পর্শ করে না।


উদাহরণ

১. প্রাকৃতিক লগারিদম (Natural Logarithm): যদি ভিত্তি \( e \) হয়, যেখানে \( e \approx 2.718 \), তাহলে লগারিদম ফাংশনটি \( \ln(x) \) বা \( \log_e(x) \) আকারে লেখা হয়। এটি প্রাকৃতিক লগারিদম নামে পরিচিত।

উদাহরণ: \( f(x) = \ln(x) \) এর জন্য ডোমেন হলো \( x > 0 \) এবং রেঞ্জ হলো সব বাস্তব সংখ্যা।

২. দশমিক লগারিদম (Common Logarithm): যদি ভিত্তি \( 10 \) হয়, তখন লগারিদমিক ফাংশনটি \( \log(x) \) বা \( \log_{10}(x) \) আকারে লেখা হয়।

উদাহরণ: \( f(x) = \log_{10}(x) \) এর জন্য ডোমেন হলো \( x > 0 \) এবং রেঞ্জ হলো সব বাস্তব সংখ্যা।


লগারিদমিক ফাংশনের ব্যবহার

লগারিদমিক ফাংশন বিভিন্ন ক্ষেত্রে ব্যবহৃত হয়, যেমন:

  • গণনা: বড় সংখ্যাগুলি হ্রাস করতে (সংকুচিত করতে)।
  • বাস্তব জীবনের প্রক্রিয়া: ভূমিকম্পের মাত্রা নির্ধারণ (রিখটার স্কেল), শব্দের তীব্রতা (ডেসিবেল স্কেল) ইত্যাদির ক্ষেত্রে।
  • গাণিতিক ও বৈজ্ঞানিক বিশ্লেষণ: গ্রোথ এবং ডিকেই বিশ্লেষণে এবং বিভিন্ন লজিস্টিক মডেলে।

লগারিদমিক ফাংশন আমাদের সূচকীয় পরিবর্তনশীলতার বিশ্লেষণ সহজতর করে, যা গণিতে এবং বিজ্ঞানের বিভিন্ন ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ।

ত্রিকোণমিতিক ফাংশন

ত্রিকোণমিতিক ফাংশন (Trigonometric Functions) হলো এমন ধরনের ফাংশন, যা কোণ এবং তার সম্পর্কিত অনুপাত নিয়ে কাজ করে। ত্রিকোণমিতিক ফাংশনগুলো মূলত ডান-কোণযুক্ত ত্রিভুজের বাহুগুলোর অনুপাতের উপর ভিত্তি করে তৈরি হয়। প্রধান ত্রিকোণমিতিক ফাংশনগুলো হলো সাইন (sin), কোসাইন (cos), এবং **ট্যানজেন্ট (tan)**। এদের সঙ্গে সম্পর্কিত অন্যান্য ফাংশনগুলো হলো কোট্যানজেন্ট (cot), সেক্যান্ট (sec), এবং **কোসেক্যান্ট (csc)**।


প্রধান ত্রিকোণমিতিক ফাংশন

১. সাইন (sin): \( \sin(\theta) \) হলো ডান-কোণযুক্ত ত্রিভুজের বিপরীত বাহু (opposite side) এবং অতিভুজ (hypotenuse) এর অনুপাত।
\[
\sin(\theta) = \frac{\text{বিপরীত বাহু}}{\text{অতিভুজ}}
\]

২. কোসাইন (cos): \( \cos(\theta) \) হলো সংলগ্ন বাহু (adjacent side) এবং অতিভুজের অনুপাত।
\[
\cos(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{অতিভুজ}}
\]

  1. ট্যানজেন্ট (tan): \( \tan(\theta) \) হলো বিপরীত বাহু এবং সংলগ্ন বাহুর অনুপাত।
    \[
    \tan(\theta) = \frac{\text{বিপরীত বাহু}}{\text{সংলগ্ন বাহু}}
    \]

সম্পর্কিত ত্রিকোণমিতিক ফাংশন

৪. কোট্যানজেন্ট (cot): \( \cot(\theta) \) হলো সংলগ্ন বাহু এবং বিপরীত বাহুর অনুপাত, যা \( \tan(\theta) \)-এর বিপরীত।
\[
\cot(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{বিপরীত বাহু}} = \frac{1}{\tan(\theta)}
\]

৫. সেক্যান্ট (sec): \( \sec(\theta) \) হলো অতিভুজ এবং সংলগ্ন বাহুর অনুপাত, যা \( \cos(\theta) \)-এর বিপরীত।
\[
\sec(\theta) = \frac{\text{অতিভুজ}}{\text{সংলগ্ন বাহু}} = \frac{1}{\cos(\theta)}
\]

৬. কোসেক্যান্ট (csc): \( \csc(\theta) \) হলো অতিভুজ এবং বিপরীত বাহুর অনুপাত, যা \( \sin(\theta) \)-এর বিপরীত।
\[
\csc(\theta) = \frac{\text{অতিভুজ}}{\text{বিপরীত বাহু}} = \frac{1}{\sin(\theta)}
\]


ত্রিকোণমিতিক ফাংশনের বৈশিষ্ট্য

  • পর্যায়: ত্রিকোণমিতিক ফাংশনগুলো পর্যায়বৃত্তিক (periodic) অর্থাৎ, এগুলো নির্দিষ্ট সময় পরপর পুনরাবৃত্ত হয়।
    • \( \sin(\theta) \) এবং \( \cos(\theta) \)-এর পর্যায় হলো \( 2\pi \)।
    • \( \tan(\theta) \) এবং \( \cot(\theta) \)-এর পর্যায় হলো \( \pi \)।
  • ডোমেন ও রেঞ্জ:
    • \( \sin(\theta) \) এবং \( \cos(\theta) \)-এর ডোমেন হলো সমস্ত বাস্তব সংখ্যা এবং রেঞ্জ হলো \([-1, 1]\)।
    • \( \tan(\theta) \) এবং \( \cot(\theta) \)-এর ডোমেনে কিছু বিশেষ কোণ নিষিদ্ধ থাকে, যেখানে ফাংশনের মান অসীম হয়। এদের রেঞ্জ হলো সমস্ত বাস্তব সংখ্যা।
    • \( \sec(\theta) \) এবং \( \csc(\theta) \)-এর ডোমেনেও কিছু বিশেষ কোণ নিষিদ্ধ থাকে এবং এদের রেঞ্জ হলো \( (-\infty, -1] \cup [1, \infty) \)।

ত্রিকোণমিতিক ফাংশনের ব্যবহার

ত্রিকোণমিতিক ফাংশন বাস্তব জীবনের অনেক ক্ষেত্রে ব্যবহৃত হয়, যেমন:

  • কোণ এবং দূরত্ব নির্ণয়: প্রকৌশল, জ্যোতির্বিজ্ঞান, এবং স্থাপত্যে বিভিন্ন দূরত্ব ও কোণ নির্ণয়ের জন্য।
  • আন্দোলন এবং তরঙ্গ: শব্দ, আলো এবং জল তরঙ্গের গতিবিধি বিশ্লেষণে।
  • পর্যায়বৃত্তিক প্রকৃতি: ঋতু পরিবর্তন, দোলন, এবং জ্যামিতিক পরিমাপের জন্য।

ত্রিকোণমিতিক ফাংশন তাই গণিতে এবং বিজ্ঞানের নানা ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ এবং কার্যকরী।

পরমমান ফাংশন (Absolute Value Function) এমন একটি ফাংশন, যা যেকোনো সংখ্যার ধনাত্মক মান প্রদান করে। সহজভাবে বললে, কোনো সংখ্যার পরমমান মানে হলো সেই সংখ্যার মূল মান, কিন্তু ধনাত্মক রূপে। পরমমান ফাংশনকে সাধারণত \( f(x) = |x| \) আকারে লেখা হয়।


পরমমান ফাংশনের সংজ্ঞা

\[
|x| =
\begin{cases}
x, & \text{যদি } x \geq 0 \
-x, & \text{যদি } x < 0
\end{cases}
\]

অর্থাৎ:

  • যদি \( x \) ধনাত্মক বা শূন্য হয়, তবে পরমমান তার মূল মানই থাকে।
  • যদি \( x \) ঋণাত্মক হয়, তবে পরমমান তার বিপরীত ধনাত্মক মানে রূপান্তরিত হয়।

পরমমান ফাংশনের বৈশিষ্ট্য

১. ডোমেন: পরমমান ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।

২. রেঞ্জ: পরমমান ফাংশনের রেঞ্জ হলো সব ধনাত্মক বাস্তব সংখ্যা এবং শূন্য, অর্থাৎ \( y \geq 0 \)।

৩. গ্রাফ: পরমমান ফাংশনের গ্রাফ \( y = |x| \) হলো একটি V-আকৃতির রেখা, যা \( y \)-অক্ষ বরাবর প্রতিসম। এই গ্রাফটি মূলবিন্দু (0, 0) থেকে শুরু হয় এবং ধনাত্মক ও ঋণাত্মক উভয় দিকেই সমানভাবে বিস্তৃত হয়।

৪. প্রতিসাম্য: পরমমান ফাংশনের গ্রাফটি \( y \)-অক্ষের সাপেক্ষে প্রতিসম, যা নির্দেশ করে যে \( |x| = |-x| \)।


উদাহরণ

  • \( |5| = 5 \) (কারণ \( 5 \) ইতিবাচক, তাই পরমমান তার মূল মানই থাকে)।
  • \( |-3| = 3 \) (কারণ \( -3 \) ঋণাত্মক, তাই পরমমান ধনাত্মক হয়ে \( 3 \) হয়)।
  • \( |0| = 0 \) (শূন্যের পরমমান শূন্যই থাকে)।

পরমমান ফাংশনের ব্যবহার

পরমমান ফাংশন গণিতের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:

  • দূরত্ব মাপা: দুই বিন্দুর মধ্যে দূরত্ব নির্ণয়ে ব্যবহৃত হয়।
  • জটিল সংখ্যা: জটিল সংখ্যার পরমমান নির্ণয়ে।
  • বাস্তব সমস্যা: বাস্তব জীবনের বিভিন্ন সমস্যায়, যেমন ত্রুটি বা বিচ্যুতি নির্ণয় এবং দৈর্ঘ্য মাপা।

পরমমান ফাংশন আমাদের কোনো সংখ্যার নির্দিষ্ট দূরত্ব বা পরিমাপকে ধনাত্মক রূপে প্রকাশ করতে সাহায্য করে, যা অনেক গাণিতিক সমস্যায় প্রয়োজনীয়।

Promotion